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ABSTRACT
Machine Learning (ML) pipelines are the fundamental building block for productionizing ML models. However,
much introductory material for machine learning and deep learning emphasizes ad-hoc feature engineering and
training pipelines to experiment with ML models. Such pipelines have a tendency to become complex over time
and do not allow features to be easily re-used across different pipelines. Duplicating features can even lead to
correctness problems when features have different implementations for training and serving. In this demo, we
introduce the Feature Store as a new data layer in horizontally scalable machine learning pipelines.

1 INTRODUCTION

In this demonstration, we introduce an open-source data
platform with support for machine learning (ML) pipelines,
Hopsworks, where every stage in the pipeline can be scaled
out to potentially hundreds of servers, enabling faster train-
ing of larger models with more data. An end-to-end machine
learning pipeline covers all stages in the production and op-
eration of ML models, from data ingestion and preparation,
to experimentation, to training, to deployment and operation.
Our demonstration will have the added twist of introducing
a new data management layer, the Feature Store. We will
show how the Feature Store simplifies such pipelines, pro-
viding an API for data engineers to produce features and
an API with which data scientists can easily select features
when designing new models. Our Feature Store is based on
open-source frameworks, see Figure 3, using Apache Spark
to compute features, Apache Hive to store feature data, and
MySQL Cluster (NDB) for feature metadata. Our Feature
Store also supports generating training data, from selected
features, in native file formats for TensorFlow, Keras, and
PyTorch. Our Feature Store is integrated in a multi-tenant
security model that enables the governance and reuse of
features as first-class entities within an organization. We
also provide Python API support for both the Feature Store
and for building pipelines in our framework. APIs ease the
programmer’s burden when discovering and using services
such as Kafka, the Feature Store, our REST API, and model
serving, as well as when performing distributed model train-
ing and hyperparameter optimization.
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Figure 1. End-to-End ML Pipeline, orchestrated by Airflow

2 END-TO-END ML PIPELINES

In ML pipelines on Hopsworks, see Figure 1, horizontal
scalability is provided using Apache Spark for feature engi-
neering, Apache Hive for storing feature data, HopsFS (Ni-
azi et al., 2017) (a next generation HDFS) as the distributed
filesystem for training data, Ring-AllReduce using Tensor-
Flow for distributed training, and Kubernetes to serve mod-
els. We also support Kafka for storing logs for ML models
served from Kubernetes, and Spark streaming applications
for processing those logs in near-realtime. Distributed train-
ing and hyperparameter optimization with TensorFlow and
PyTorch use PySpark to distribute computations, replicated
conda environments to ensure Python libraries are available
at all hosts, and YARN to allocate GPUs, CPUs, and mem-
ory to applications. Our pipelines are driven and managed
by a scalable, consistent, distributed shared memory service
built on MySQL Cluster.

2.1 Demonstration

In our live demonstration, we will use a managed version of
Hopsworks running from a web browser at www.hops.site.
We will start with an Airflow job orchestrating an entire ML
pipeline that consists of a series of different jobs, all im-
plemented in Jupyter notebooks and invoked from Airflow
by an operator that calls the REST API to Hopsworks, see
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Figure 2. Hopsworks Data and ML Platform Architecture

Figure 3. Feature Store Architecture

Figure 2. We will then go through the Jupyter notebooks in-
dividually. We will start with discovering and downloading a
ML dataset to work with - Hopsworks supports peer-to-peer
sharing of large datasets. We will then write/run a Spark
job to engineer features from the dataset. We also support
Beam/Flink as jobs, so we can show an additional data vali-
dation job using TensorFlow Extended (TFX) (Baylor et al.,
2017). After the feature engineering stage, the features
will be published to our Feature Store. The next stage is
where a Data Scientist will write a notebook to select the
features that will be used to train a model. This job will out-
put training data in a chosen file format (such as .tfrecords,
.csv, .parquet, .npy, .hdf5) to HopsFS. The next job in the
pipeline is the experimentation or training step. Here, the
data scientist designs (or evolves) a model architecture and
discovers good hyperparameters by running lots of parallel
experiments on GPUs. Similar to MLflow (Zaharia et al.,
2018), Hopsworks manages and archives ML experiments
for easy reproduction and archiving. The next stage is to
train a model with the chosen hyperparameters using lots of
GPUs and RingAll-Reduce for distributed training. The out-
put of the training step is a model, saved to HopsFS. Now,
the model can be analyzed and validated (such as using
TFX model analysis), and then deployed for serving using
TensorFlow Serving (with many options available, such as
A/B testing and number of replicated instances behind a
load-balancer). Finally, we will show client applications
using the deployed model, and a streaming job will be run
to monitor model predictions, notify of any anomalies, and
collect more training data (by storing predictions that are
later linked with outcomes).

2.2 Teaching Platform and Interactive Demo

Our research organization runs a managed version of
Hopsworks with over 1000 users. This managed platform,
see Figure 2, is also used for lab and project work in Deep
Learning and Big Data courses at a large technical university.

Hopsworks has a User Interface and strong security support,
built around TLS certificates for applications, users, and ser-
vices. Similar to Jupyter Hub, students can write interactive
programs in Jupyter notebooks. In contrast to JupyterHub,
users can run jobs that access up to 100s of TBs of data on
1000s of cores, and use 10s of GPUs for model experimen-
tation or training. Hopsworks also includes a project-based
multi-tenancy environment, so students can work in groups
on sandboxed data. Our managed platform provides many
popular datasets for machine learning, including Imagenet,
Wikipedia, Youtube-8M, and Kinetics.

In the interactive demo, participants will be invited to use
their laptops and an Internet connection to create accounts
on our managed platform. With an account, a user can
create a project, link in a large machine learning dataset, and
run pre-canned notebooks or end-to-end machine learning
pipelines. Participants will be given enough quota to use
100s of CPUs, and several GPUs, if they so choose.

2.3 Summary

We will demonstrate a data and ML platform, Hopsworks,
that supports the design, debugging, and running of deep
learning pipelines at scale. All stages of the pipeline can
be scaled out horizontally, as the platform manages the
whole stack from resource management (YARN with GPU
support) to API support for running distributed training and
hyperparameter optimization experiments.
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