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ABSTRACT
We demonstrate JANUS, a system that achieves the performance of symbolic DL frameworks while maintaining
the programmability of imperative DL frameworks. To achieve the performance of symbolic DL frameworks,
JANUS converts imperative DL programs into static dataflow graphs by exploiting the inherently static nature of DL
programs. To preserve the dynamic semantics of Python, JANUS generates and executes the graph speculatively,
verifying the correctness of the graph at runtime.

1 INTRODUCTION
As the complexity of deep neural networks are growing
more than ever, scientists are creating various deep learning
(DL) frameworks to satisfy diverse requirements. Current
DL frameworks can be classified into two categories based
on their programming and execution models. Symbolic DL
frameworks including TensorFlow (Abadi et al., 2016) and
MXNet (Chen et al., 2015) require users to build symbolic
graphs to represent the computation before execution, ensur-
ing much efficient execution. On the other hand, imperative
DL frameworks such as PyTorch (Paszke et al., 2017) or
TensorFlow Eager (Agrawal et al., 2019) directly execute DL
programs, providing a much more intuitive programming
style without a separate optimization phase.
Since both camps have clear advantages and also limitations,
combining their advantages can improve the programmabil-
ity and performance of DL frameworks at the same time.
Recent works such as AutoGraph (Moldovan et al., 2019),
PyTorch JIT (Paszke et al., 2017), and MXNet Gluon (glu)
attempt to combine the two approaches.
However, converting an imperative program into symbolic
graph(s) is not trivial due to the discrepancy between Python
programs and symbolic graphs. Various characteristics of
Python, including variable types, control flow decisions and
the values to read from or write to the heap, cannot be de-
termined at static time without runtime information. On the
other hand, such characteristics are mandatory for build-
ing symbolic graphs. Moreover, as such characteristics can
change after generating graphs, it can be erroneous to reuse
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the graphs based on outdated context information. For this
reason, recent works that attempt to combine the two ap-
proaches require users to explicitly provide the necessary in-
formation, or generate incorrect or sub-optimal results when
converting an imperative program to symbolic graph(s), fail-
ing to fully preserving the merits of the two approaches.
To overcome such challenges, JANUS (Jeong et al., 2019)
adopts speculative symbolic graph generation and execution.
JANUS first introduces a profiling phase to gather information
required for generating optimized symbolic graphs. Second,
to ensure the correctness of graph execution, JANUS takes
a speculative graph generation and execution approach, au-
tomatically analyzing the program context and invalidating
the graphs with outdated context information. With this tech-
nique, JANUS successfully converts various neural networks
written in TensorFlow Eager, including convolutional, recur-
rent and recursive neural networks and deep reinforcement
learning models, achieving up to 47.6 times higher training
throughput than TensorFlow Eager. In the demonstration, we
will show that JANUS can correctly convert imperative DL
programs into symbolic graphs with improved performance,
requiring no additional input from users.

2 JANUS
We briefly explain how the dynamic features of Python are
converted into symbolic graph elements via profiling and
speculative approach in JANUS, then describe the system
design of JANUS that employs the technique.

Handling Dynamic Features of Python. JANUS can con-
vert various dynamic features of Python correctly with little
performance penalty, by specializing dynamic characteristics
based on the runtime information. For example, for dynamic
control flow statements, if a certain control flow statement
takes only a particular path during profiling, JANUS converts
only the path to graph elements without complex symbolic
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Figure 1: An illustration of the execution model of JANUS

control flow operations, assuming that the control flow deci-
sion is actually fixed. In addition, to ensure the correctness,
JANUS inserts an assertion operation that validates the as-
sumption. If the assumption does not hold, JANUS makes
more relaxed assumptions to embrace additional runtime
context information and constructs corresponding graphs.
Dynamic types and impure functions of Python can be han-
dled similarly (Jeong et al., 2019).
System Design. Figure 1 depicts the system components and
the overall execution model of JANUS. Once JANUS receives
a DL program, the program is first executed imperatively,
while Profiler gathers runtime information required for mak-
ing reasonable program context assumptions (A). After a
sufficient amount of information has been collected, Spec-
ulative Graph Generator tries to convert the program into
symbolic dataflow graph(s) with the assumptions based on
the runtime information (B). Imperative Executor executes
the part of the program that is not converted into symbolic
graphs (C). If the system already has a graph with correct as-
sumptions regarding the program context, Speculative Graph
Executor executes the symbolic graph instead of imperative
execution of the program (D). If the runtime context does
not comply with the assumptions or the executor detects any
broken assumptions during the graph execution, the system
cancels the graph execution and falls back to imperative ex-
ecution (E). In this case, JANUS starts the procedure from
profiling again to generate a graph with updated context
information.

3 DEMONSTRATION
We aim to demonstrate that JANUS achieves symbolic graph
framework performance while maintaining the simple pro-
grammability of imperative execution by correctly handling
complex features of Python. We will showcase our system
with various DL models including convolution and recursive
neural networks.
Programmability and Performance. To show that JANUS
can transparently convert various imperative DL programs,
we use Jupyter (Kluyver et al., 2016) Notebook to execute
Python programs with various execution models, as shown
in Figure 2. The exact same program written in the intuitive
imperative programming model will run correctly, yet much
faster on JANUS, compared to the imperative execution. In
addition, we also show that the users must write complex
programs to achieve the high throughput in symbolic DL

Figure 2: Jupyter Notebooks with Imperative (left), JANUS
(middle), and Symbolic (right) frameworks installed.

Figure 3: Visualization of a generated graph (left), training
progress (middle), an annotated AST (right).

programs. We use TensorBoard (ten) to visualize the live
training progress, as shown in Figure 3. Using Jupyter Note-
book the audience can directly modify the code and compare
the results.
Correctness. To demonstrate the correctness of JANUS, first
wewill show that it is easy to produce erroneous results when
converting imperative DL programs into symbolic graphs in
existing graph conversion frameworks without our specula-
tive execution approach. We then show that JANUS handles
dynamic Python features correctly. We will also provide
separate notebooks for executing other related work. To pro-
vide more detailed information, we will use vpyast (vpy)
and TensorBoard to visualize annotated ASTs and generated
graphs as shown in Figure 3.
Required Equipment. Our demonstration does not require
any specific equipment, except for a laptop connected to the
Internet, which we will prepare for. However, a large display
can be useful for the audience to read source code, generated
graphs, and training dashboards.
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