ON-CHIP FPGA DEBUG INSTRUMENTATION FOR MACHINE LEARNING
APPLICATIONS

Daniel Holanda Noronha! Ruizhe Zhao? Jeff Goeders® Wayne Luk?> Steven J.E. Wilton '

ABSTRACT
FPGAs show promise as machine learning accelerators for both training and inference. Designing these circuits
on reconfigurable technology is challenging, especially due to bugs that only manifest on-chip when the circuit
is running at speed. In this demonstration we present instrumentation that accelerates the process of debugging
machine learning circuits on-chip by recording domain-specific characteristics of the circuit instead of the raw
values of the variables. As a result, the proposed instrumentation combined can achieve 21.8—24.1x longer
visibility, while still providing useful information for the designer.

1 INTRODUCTION

The need for a high performance per watt combined with the
rapid changing requirements of machine learning algorithms
is leading companies to adopt FPGAs as accelerators in data
centers (Putnam et al., 2014). Despite these advantages,
mapping circuits to those devices is difficult, partially due
to the low on-chip observability that hinders debugging.
Differently from simulation, which provides full visibility,
only on-chip signals that interact with the external world
can be observed using external equipment. Since only a
limited number of I/O pins is available, a common solution
is to use on-chip trace buffers to record the behaviour of the
circuit into on-chip memory for subsequent analysis.

Although general purpose trace buffers can be helpful, de-
bugging a machine learning circuit mapped into an FPGA
is still very challenging for three main reasons. First, those
applications generally require very long run-times (multiple
training/inference samples) before overall behaviour can
be understood. Second, the correctness of an ML circuit
can often not be determined by looking at individual sig-
nals/variables. The weight values of the matrix, for example,
can only be said to be “correct” when properly acting in
concert with the other parts of the system. Third, ML cir-
cuits are often designed by using high level frameworks
(e.g. Tensorflow or Caffe), which means that visibility in
the context of the hardware design may not be as useful.

"Department of Electrical and Computer Engineering, Uni-
versity of British Columbia, Vancouver, Canada “Department of
Computing, Imperial College London, London, UK *Department
of Electrical and Computer Engineering, Brigham Young Uni-
versity, USA. Correspondence to: Daniel Holanda Noronha
<danielhn@ece.ubc.ca>.

Proceedings of the gnd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

In this demonstration, we are showing infrastructure that
accelerates the debug of machine learning applications on
FPGAs. The heart of our system is instrumentation opti-
mized specifically for these types of applications. Similar
to previous work, our instrumentation records data as the
circuit runs at speed for later off-line interrogation. Unlike
existing debug flows we use domain-specific characteristics
of ML circuits to create instruments that maximize trace
buffer utilization, while providing information that is mean-
ingful to an engineer.

2 DOMAIN-SPECIFIC INSTRUMENTATION

Many machine learning applications consist of large arrays
(eg. activations or weights). Our instruments were designed
especially to track those large arrays over time. Instead of
tracking the raw information at every cycle our instrumen-
tation continuously gathers information and combines it at
every frame. In a CNN, for example, a frame may represent
all calculations corresponding to a single input image.

We have evaluated three main instruments. The distribution
instrument generates one histogram per frame, which allows
the designer to easily detect outliers or errors causing activa-

Off-line
Analysis Tool

Domain-Specific
Instrumentation
15 15 5 5 6 < B D

Figure 1. Domain-Specific Debug Instrumentation

On-chip FPGA Debug Instrumentation for Machine Learning Applications

/ Observed Matrix
030002 0.1

0.2 0.4 0.7 0.3
0.3 0.2 04 0.2

0.3 0.3 0.1 0.3 /"
Time

‘,""ﬁacked Informatio;]/ \

st
2
1 Time
Distribution
“..__Instrument

Al
/I"ime ‘
Summary Statistics :
Instrument

== s o[
- o o =

1
(]
1
0

o|lalal~

2

Aime

Spatial Sparsity
Instrument

Figure 2. Instruments Overview

N Uninstrumented Circuit
B General Purpose

B Distribution - 32 bins
B Distribution - 128 bins

BEmm Spatial Sparsity
BN Summary Statistics
Instruments combined

L)
N -
Y R
u
|
: i B
=
g 2000 A
>
i~}
=
L

32x28x28

B8x28x28
Traced Matrix Size

1x28x28

Figure 3. Resources and trace length when compared to general
purpose debug.

tions to “clamp” at minimum/maximum values. The spatial
sparsity instrument stores the sparsity of the observed ma-
trix while preserving the spatial location of each element,
providing a graphical visualization of a potential bug. Fi-
nally, the summary statistics, such as measures of tendency,
dispersion and sparsity can also be traced at every frame.

3 EVALUATION

We compare our technique to the HLS-oriented debug flow
presented in (Goeders & Wilton, 2017). The user circuits
used for this comparison are composed of kernels that are
part of Convolutional Neural Networks (CNNS) generated
using (Zhao et al., 2018). Five different configurations are
tested for each of the three kernels.

We refer to the number of times information about the entire
frame can be tracked as the trace size. As shown in Figure 3,
the general purpose debug instrumentation is only able to
trace the kernels for a few frames, even assuming that we are

Distribution | Spatial Sparsity | Summary Statistics

Tracked Variables

weight conv5

actv_convs

Sparsity Matrix

Playback Design

Info Offline Statistics
Trigger Variable: idx Avg. Sparsity: 46.8%
Trace Length: 128

<< < STEP 89 > >>

Figure 4. User interface - Spatial sparsity instrument tab

perfectly packing the information. In contrast, the proposed
instrumentation can achieve significantly longer trace size at
a low area and latency cost. Even if all proposed instruments
are combined, information about the frames can be stored
for 21.8—24.1x longer.

4 DEMONSTRATION PLATFORM

In this demonstration, the proposed instrumentation will
be presented through the user interface shown in Figure 4.
The graphical interface will be used by the audience for off-
line analysis after the data has been traced and part of the
audience will be challenged to find artificially added bugs
using our GUL. Such interface allows the user to step through
multiple frames of different CNN circuits and provides a
concrete example of how the proposed instruments can be
visualized and used to accelerate the process of debugging
real machine learning applications. No special equipment is
required at the place of the demo.

We will also make live demonstrations of how to easily
instrument HLS-generated circuits and discuss how our
application-specific debug instrumentation can be integrated
into existing commercial debugging tools.

REFERENCES

Goeders, J. and Wilton, S. Signal-tracing techniques for in-
system FPGA debugging of high-level synthesis circuits.
IEEFE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 36(1):83-96, Jan 2017.

Putnam, A. et al. A reconfigurable fabric for accelerating
large-scale datacenter services. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium
on, pp. 13-24, June 2014. doi: 10.1109/ISCA.2014.
6853195.

Zhao, R., Ng, H., Luk, W., and Niu, X. Towards efficient
convolutional neural network for domain-specific appli-
cations on fpga. arXiv:1809.03318, Sept 2018.

