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ABSTRACT
Deep learning algorithms achieve high classification accuracy at the expense of significant computation cost.
In order to reduce this cost, several quantization schemes have gained attention recently with some focusing
on weight quantization, and others focusing on quantizing activations. This paper proposes novel techniques
that individually target weight and activation quantizations resulting in an overall quantized neural network
(QNN). Our activation quantization technique, PArameterized Clipping acTivation (PACT), uses an activation
clipping parameter α that is optimized during training to find the right quantization scale. Our weight quantization
scheme, statistics-aware weight binning (SAWB), finds the optimal scaling factor that minimizes the quantization
error based on the statistical characteristics of weight distribution without the need for an exhaustive search.
Furthermore, we provide an innovative insight for quantization in the presence of shortcut connections, which
motivates the use of high-precision for the shortcuts. The combination of PACT and SAWB results in a 2-bit
QNN that achieves state-of-the-art classification accuracy (comparable to full precision networks) across a range
of popular models and datasets. Using a detailed hardware accelerator system performance model, we also
demonstrate that relative to the more recently proposed Wide Residual Network (WRPN) approach to quantization,
PACT-SAWB not only achieves iso-accuracy but also achieves 2.7∼3.1× speedup.

1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) have
achieved remarkable accuracy for tasks in a wide range of
application domains including image processing (He et al.,
2016b), machine translation (Gehring et al., 2017), and
speech recognition (Zhang et al., 2017). These state-of-the-
art CNNs use very deep models, consuming 100s of ExaOps
of computation during training and GBytes of storage for
model and data. This complexity poses a tremendous chal-
lenge for widespread deployment, especially in resource
constrained edge environments - leading to a plethora of
explorations in compressed models that minimize memory
footprint and computation while preserving model accuracy
as much as possible.

Recently, a whole host of different techniques have been
proposed to alleviate these computational costs. Among
them, reducing the bit-precision of key CNN data structures,
namely weights and activations, has gained attention due
to its potential for significant reduction in both storage re-
quirements and computational complexity. Several weight
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quantization techniques (Li & Liu, 2016; Zhu et al., 2017;
Jan Achterhold, 2018; Antonio Polino, 2018; Lu Hou, 2018)
have been proposed to reduce bit-precision of CNN weights
but ended up sacrificing model accuracy. Furthermore, a
straightforward extension of weight quantization schemes
to activation quantization was also proposed, but it incurred
significant accuracy degradation in large-scale image classi-
fication tasks such as ImageNet (Russakovsky et al., 2015).
Lately, activation quantization schemes based on greedy
layer-wise optimization were proposed (Park et al., 2017;
Zhou et al., 2017; Cai et al., 2017), but they required ex-
pensive processing (e.g., Lloyd’s algorithm for activation
quantization in (Cai et al., 2017)), and achieved limited
accuracy improvement.

Complementary to quantization schemes, increasing the
network size has been shown to compensate accuracy loss
due to quantization. For example, (Asit Mishra, 2018b)
and (McDonnell, 2018) employed Wide Residual Network
(Zagoruyko & Komodakis, 2016) for weight and activation
quantization and demonstrated that increasing the number of
channels reduces the impact of quantization error and allows
more aggressive bit-width reduction. However, increasing
the network size leads to a quadratic increase in the num-
ber of operations, which in turn increases the classification
latency.

This work is motivated by the desire to significantly im-
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Table 1. Comparison of the state of the art neural net quantization schemes.
QNN Scheme Training Complexity Quantization at inference Enlarge Network size
WEQ (Park et al., 2017) Weight clustering (iterative) Non-uniform N
BQ (Zhou et al., 2016) Histogram equalization (iterative) Non-uniform N
HWGQ (Cai et al., 2017) Lloyd’s algorithm (iterative) Non-uniform N
LQ-Nets (Zhang et al., 2018) Tune quantizers via block coordinate descent (iterative) Non-uniform N
QIP (Jung et al., 2018) Tune interval parameters via backprop (one-pass) Semi-uniform N
WRPN (Asit Mishra, 2018b) No parameter needed Uniform Y
Ours (PACT-SAWB) Compute scales or tune via backprop (one-pass) Uniform N

prove quantization schemes and achieve accuracy compa-
rable to full-precision models while requiring no changes
to the network structure - thereby harnessing the full com-
putational benefits of quantization. We propose individual
techniques targeting activation and weight quantization re-
sulting in an overall quantized neural network (QNN). Our
activation quantization technique, PArameterized Clipping
acTivation (PACT), uses an activation clipping parameter α
that is optimized during training to find the right quantiza-
tion scale. Our weight quantization scheme, statistics-aware
weight binning (SAWB), finds the optimal scaling factor
that minimizes the quantization error based on the statistical
characteristics of weight distribution without performing an
exhaustive search. Furthermore, we provide an innovative
insight for quantization in the presence of shortcut connec-
tions, which motivates the use of high-precision for the
shortcuts. As a result, We realize 2-bit QNNs with PACT-
SAWB, which achieve the state-of-the-art classification ac-
curacy comparable to full precision networks while incur-
ring no larger than O(n) computational overhead. Using a
detailed hardware accelerator system performance model,
we demonstrate that relative to the WRPN approach for
quantization (Asit Mishra, 2018b), PACT-SAWB not only
achieves iso-accuracy but also achieves 2.7∼3.1× speedup.

The rest of the paper is organized as follows: Section 2
provides a summary of prior work on QNNs and challenges.
We present a novel activation quantization scheme in Section
3 followed by a new weight quantization scheme in Section
4 and an in-depth discussion on ResNet quantization in
Section 5. In Section 6, we demonstrate the effectiveness
of our quantization schemes using a 2-bit QNN across a set
of popular CNN models and datasets. Section 7 describes
the hardware accelerator system-level performance model,
and presents the utilization and speedup achieved by PACT-
SAWB.

2 PRIOR WORK IN QNN
There has been extensive research on quantizing weight and
activation to minimize CNN computation and storage costs.
One of the earliest studies in weight quantization schemes
(Hwang & Sung, 2014; Courbariaux et al., 2015) show that
it is indeed possible to quantize weights to 1-bit (binary)

or 2-bits (ternary), allowing an entire DNN model to fit in
resource-constrained platforms (e.g., mobile devices). Effec-
tiveness of weight quantization techniques has been further
improved by ternarizing weight using its statistics (Li & Liu,
2016) or by tuning quantization scales during training (Zhu
et al., 2017). To further reduce the cost of computing and
storing activations, prior work (Kim & Smaragdis, 2015;
Hubara et al., 2016a; Rastegari et al., 2016) proposed the
use of fully binarized neural networks where activations are
also quantized to 1-bit. More recently, activation quantiza-
tion schemes using more general selections in bit-precision
(Hubara et al., 2016b; Zhou et al., 2016) have been studied.

However, these early techniques on weight and activation
quantization show significant degradation in accuracy for
ImageNet tasks (Russakovsky et al., 2015) when bit preci-
sion is reduced significantly (≤ 2-bits). To improve QNN
accuracy for ImageNet, more complex quantization schemes
have been adopted. Weighted-entropy based quantization
(WEQ, Park et al. 2017) used iterative search algorithms for
finding weight clusters or base/offset of logarithmic quan-
tization for activation. Balanced quantization (BQ, Zhou
et al. 2017) used recursive partitioning for histogram equal-
ization. Half-wave Gaussian quantization (HWGQ, Cai
et al. 2017) found the quantization scale via Lloyd optimiza-
tion on Normal distribution. More recently, quantization
schemes were learned in the context of training. LQ-Nets
(Zhang et al., 2018) proposed trainable quantizers that can
be updated via block-coordinate descent in the forward pass.
Joint training of quantization interval parameters (QIP, Jung
et al. 2018) parameterized the quantization formula with
trainable parameters tuned during back-propagation. These
schemes demonstrated state-of-the-art QNN accuracy for
neural networks for ImageNet, such as ResNet, but they of-
ten involve computationally expensive iterative algorithms
during the training. Furthermore, they require non-uniform
quantization levels during inference, which is a challenge
for efficient hardware implementation.

Alternative approaches for QNN is to use simple quanti-
zation schemes but reduce impact of quantization error
by performing more computations. One such approach
is to increase the size of the network; (Zagoruyko & Ko-
modakis, 2016) demonstrated that accuracy of a neural net-
work can be improved by increasing the number of channels
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(called widening). Wide reduced-precision network (WRPN,
Asit Mishra 2018b) exploited this increased accuracy for
QNN, by doubling the channel size to compensate for quan-
tization error. (McDonnell, 2018) also employed the idea
of widening along with other modification in the training
setting (e.g., warm-restart learning rate schedule) to im-
prove accuracy for 1-bit weight quantization. Another way
of taking advantage of the extra computation for QNN is
knowledge distillation (e.g., Apprentice Asit Mishra 2018a),
where a teacher network (which is typically large and trained
in full precision) is employed to help train the student net-
work (one that is quantized). In all of these approaches
accuracy improvement for QNN comes at the expense of
large computational cost.

Table 1 summarizes characteristics of these QNN schemes.
Most of the state of the art schemes involve slow iterative al-
gorithms such as clustering or Lloyd’s algorithm, hindering
adoption within the model training process. In addition, non-
uniform quantizations often require additional data compar-
ison operations in the hardware processing engines, adding
significant area and power overhead. Although WRPN uses
a simple quantization scheme, it requires larger number of
computations for a network, thereby increasing the inference
latency.

In summary, prior quantization techniques either incur no-
ticeable degradation in accuracy relative to full-precision,
or significantly increase computational complexity for train-
ing and/or inference to overcome quantization errors. In
this work we set out to explore quantization schemes for
both weights and activations to achieve accuracy compara-
ble to full-precision models while maintaining quantization
computation simple.

3 PARAMETERIZED CLIPPING
ACTIVATION

3.1 Challenge in Activation Quantization

Activation quantization becomes challenging when ReLU
(the most commonly used activation function in CNNs) is
used as the layer activation function. ReLU allows gra-
dient of activations to propagate through deep layers and
therefore achieves superior accuracy compared to other ac-
tivation functions (Nair & Hinton, 2010). However, as the
output of the ReLU function is unbounded, the quantization
after ReLU requires a high dynamic range (i.e., more bit-
precision). This is particularly problematic when the target
bit-precision is low, e.g., 2-bits. In Figure 1, we present the
training and validation errors of ResNet20 with ReLU on
the CIFAR10 dataset; its accuracy is significantly degraded
when activation after ReLU is quantized into 2-bits.

It has been shown that this dynamic range issue can be
alleviated by using a clipping activation function, which
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Figure 1. Train error (left) and validation error (right) when the
activation of CIFAR10 ResNet10 with ReLU or clipping activation
function (clipping level = 1.0) is quantized to 2-bits. ReLU is more
sensitive to activation quantization due to its large dynamic range.

places an upper-bound on the magnitude of output activa-
tion (Hubara et al., 2016b; Zhou et al., 2016). As shown in
Figure 1, the network with the clipping activation function
shows lower training/validation errors than the ReLU case
when activation is quantized. But, there is still noticeable
accuracy degradation compared to the full-precision base-
line. In addition, due to different characteristics of activation
across the layers and models, it is difficult to determine a
globally optimal clipping level. As an example, (Cai et al.,
2017) used Lloyd optimization to find a proper scale for
activation quantization, but its computation is expensive
without approximation.

3.2 Parameterized Clipping Activation Function

Building on these insights, we introduce PArameterized
Clipping acTivation Function (PACT), a new activation
quantization scheme in which the activation function has
a parameterized clipping level, α. This clipping level is
dynamically adjusted via stochastic gradient descent (SGD)-
based training with the goal of minimizing the accuracy
degradation due to quantization error. In PACT, the conven-
tional ReLU activation function in CNN is replaced with
the following:

y = 0.5(|x| − |x− α|+ α) =


0, x ∈ (−∞, 0)
x, x ∈ [0, α)

α, x ∈ [α,+∞)

(1)

where α limits the dynamic range of activation to [0, α].
This is illustrated in Figure 2(a). The truncated activation
output is then linearly quantized to k-bits for the dot-product
computations:

yq = round(y · 2
k − 1

α
) · α

2k − 1
(2)

With this new activation function, α is a variable in the loss
function, whose value can be optimized during training. For
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back-propagation, gradient ∂yq∂α can be computed using the
Straight-Through Estimator (STE) (Bengio et al., 2013) to
estimate ∂yq

∂y as 1. Thus,

∂yq
∂α

=
∂yq
∂y

∂y

∂α
=

{
0, x ∈ (−∞, α)
1, x ∈ [α,+∞)

(3)

The larger the α, the more the parameterized clipping func-
tion resembles ReLU. To avoid large quantization errors due
to a wide dynamic range, we include a L2-regularizer for α
in the loss function. Figure 2(b) illustrates how the value
of α changes during full-precision training of CIFAR10
ResNet20 starting with an initial value of 10 and using the
L2-regularizer. It can be observed that α converges to the
values much smaller than the initial value after epochs of
training, thereby limiting the dynamic range of activations
and reducing the quantization error. We empirically found
that α per layer was easier to train than α per-channel.

𝛼
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Figure 2. (a) PACT activation function and its gradient. The dy-
namic range of activation after PACT is bounded by α, thus it is
more robust to quantization. (b) Evolution of the trainable clipping
parameter α during training of CIFAR10 ResNet20.

3.3 Analysis

3.3.1 PACT is as Expressive as ReLU

When used as an activation function of the neural network,
PACT is as expressive as ReLU. This is because the clipping
parameter introduced in PACT, α, allows flexibility in ad-
justing the dynamic range of activation for each layer, thus
it can cover large dynamic range as needed. We demonstrate
in the simple example below that PACT can reach the same
solution as ReLU via SGD.
Lemma 3.1. Consider a single-neuron network with PACT;
x = w · a, y = PACT(x), where a is input and w is weight.
This network can be trained with SGD to find the output the
network with ReLU would achieve.

Proof. Consider a sample of training data (a, y∗). For the
purpose of illustration, consider mean-square-error (MSE)
as the cost function: L = 0.5 · (y∗ − y)2.

If x ≤ α, then clearly the network with PACT behaves the
same as the network with ReLU.

If x > α, then y = α and ∂y
∂α = 1 from (1). Thus,

∂L

∂α
=
∂L

∂y
· ∂y
∂α

=
∂L

∂y
(4)

Therefore, when α is updated by SGD,

αnew = α− η ∂L
∂α

= α− η ∂L
∂y

(5)

where η is a learning rate. Note that during this update, the
weight is not updated as ∂L

∂w = ∂L
∂y ·

∂y
∂x (= 0) · a = 0.

From the MSE cost function, ∂L∂y = (y − y∗). Therefore, if
y∗ > x, α is increased for each update of (5) until α ≥ x,
then the PACT network behaves the same as the ReLU
network.

Interestingly, if y∗ ≤ y or y < y∗ < x, α is decreased or
increased to converge to y∗. Note that in this case, ReLU
would pass erroneous output x to increase cost function,
which needs to be fixed by updating w with ∂L

∂w . PACT, on
the other hand, ignores this erroneous output by directly
adapting the dynamic range to match the target output y∗.
In this way, the PACT network can be trained to produce
output which converges to the same target that the ReLU
network would achieve via SGD.

In general, ∂L∂α =
∑
i
∂L
∂yi

, and PACT considers all the out-
put neurons together to change the dynamic range. There
are two options: (1) if output xi is not clipped, then the
network is trained via back-propagation of gradient to up-
date weight, (2) if output xi is clipped, then α is increased
or decreased based on how close the overall output is to
the target. Hence, there exist configurations under which
SGD leads to a solution that the network with ReLU would
achieve. Figure 3 demonstrates that CIFAR10 ResNet20
with PACT converges almost identical to the network with
ReLU.
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Figure 3. (a) Training error and (b) validation error of PACT for
CIFAR10 ResNet20. Note that the convergence curve of PACT
closely follow ReLU.
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Figure 4. Experiments on CIFAR10 ResNet20 to validate that
PACT balances clipping and quantization errors. (a) Trade-off
between clipping and quantization error. (b) PACT achieving the
lowest validation error that clipping activations can achieve without
an exhaustive search over the clipping levels α.

3.3.2 Balancing Clipping and Quantization Errors

In Section 3.1, we discussed that there is a trade-off between
errors due to clipping and quantization. A high clipping
level α allows large dynamic range and decreases the clip-
ping error, i.e., ErrClipi = max(xi − α, 0). However, it
also increases the magnitude of the quantization error, i.e.,
ErrQuanti ≤ 0.5 · α

2k−1 , with k-bit quantization.

The trade-off between clipping and quantization error can be
better observed in Figure 4(a) where the normalized mean-
square-error from clipping and 2-bit quantization during
training of the CIFAR10 ResNet20 is shown for the differ-
ent clipping levels. This figure explains why the network
with ReLU and the clipping activation function fail to con-
verge when the activation is quantized; ReLU suffers large
quantization error, whereas the clipping activation function
incurs significant clipping error. This imposes a burden
of finding a proper clipping level to balance clipping and
quantization errors.

PACT can effectively find a balancing point between clip-
ping and quantization errors. As explained in Section 3.3.1,
PACT adjusts the dynamic range based on how close the
output is to the target. As both clipping and quantization
errors distort the output away from the target, PACT would
increase or decrease the dynamic range during training to
minimize both clipping and quantization errors. Figure 4(b)
shows how PACT balances the clipping and quantization
errors for QNN. CIFAR10 ResNet20 is trained with a vary-
ing clipping level α from 1 to 16 for the clipping activation
function. When activation is quantized to 2-bit, the network
trained with the clipping activation function shows signifi-
cant accuracy degradation as α increases. This is consistent
with the trend in quantization error we observed in Figure
4(a). In this case, PACT achieves the best accuracy among
all the clipping levels, but without exhaustively sweeping
over α. In other words, PACT auto-tunes the clipping level

to achieve the best accuracy without incurring significant
computational overhead. The auto-tuning of the dynamic
range in PACT is critical towards efficient yet robust training
of large scale quantized neural networks, especially because
it does not increase the burden for hyper-parameter tuning.
In fact, we’ve used the same hyper-parameters as the origi-
nal network structure for all the models we tested, except
for replacing ReLU with PACT when we applied activation
quantization.

Without quantization, there is a trend that validation error
is small when α is not large or small. Surprisingly, some
of the cases even outperforms the ReLU network. PACT
also achieves comparable accuracy to ReLU, confirming its
expressivity discussed in Section 3.3.1.
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Figure 5. Statistics aware weight binning (SAWB). (a) Quantiza-
tion levels determined by the scale α. (b) Linear regression of the
optimal scales from 6 distinct distributions shows that the opti-
mal scale is well characterized by the first and second moments
(E(|w|) and E(w2)) of the weight distribution.

4 STATISTICS-AWARE WEIGHT BINNING

In addition to activation quantization, we also propose a
novel weight quantization scheme, statistics-aware weight
binning (SAWB). The main idea is to exploit the statistics
of the weight distribution (i.e., the first and the second mo-
ments) when the quantization scale is determined, so that
the dispersion of weight is better captured in the course
of training. Figure 5(a) illustrates a 2-bit (i.e., nbin = 4)
evenly-spaced SAWB scheme. We choose symmetric and
uniformly spaced quantization bins because it enables a
hardware friendly multiplication and accumulation (MAC)
design. All the values in weight are quantized to the near-
est bins, and the quantization scale αw defines their largest
quantization level. Given a weight distribution, there ex-
ists an optimal scale α∗w such that the quantization error is
minimized. That is,

α∗w = argmin
αw

||w − wq||2 (6)

This is a canonical problem that numerous prior weight
quantization schemes try to solve. Since exhaustive search
over αw is often not tractable, a popular approach is to
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assume a type of distribution for weight and come up with
an heuristics. For example, (Li & Liu, 2016) conducted a
case analysis with Normal distribution motivated by the fact
that weights are often initialized with them, then provided a
formula that estimates αw as a function of E(|w|).

However, it is often observed that the shape of the weight
distribution changes over the set of back-propagation passes
during training and becomes different from Gaussian. This
invalidates the base assumption of the prior work, which
in turn increases quantization errors. To overcome this
limitation, we consider not only E(|w|) but also E(w2).
Intuitively, the 2nd moment E(w2) captures the overall
shape of distribution while the 1st moment E(|w|) indicates
the representative value. Therefore, by employing both the
1st and the 2nd moments, the weight distribution can be
better characterized throughout the training.

From this intuition, we empirically derive a simple formula
that efficiently finds the optimal scale α∗w for a larger va-
riety of distributions. We first investigate the relationship
between the optimal scale and the 1st/2nd moments over the
six well-known distributions: Gaussian, uniform, Laplace,
logistic, triangle, and von Mises distributions. In Figure

5(b), we plot α∗
w

E(|w|) (x axis) versus
√
E(w2)

E(|w|) (y axis) for
the six distributions (points in different colors). Each point
represents the optimal scale for that distribution obtained by
a sweep over αw given the finite quantization levels (e.g.,
4 bins). We observe that the regression line closely fits all
the 6 points, thereby, validating our intuition that the opti-
mal scale α∗w can be mostly characterized by E(|w|) and
E(w2). In fact, similar to the coefficient of variation, the

term
√
E(w2)

E(|w|) measures dispersion of the weight distribu-
tion; the higher the variability in w, the larger the optimal
scale α∗w. Thus, compared to the prior work, which mostly
considers only E(|w|), our technique with both E(|w|) and
E(w2) can capture the change in the shape of weight more
faithfully.

From the empirical study, we found that the above relation-
ship between the optimal scale and the 1st/2nd moments
holds even for a different number of quantization levels
(nbin=2, 4, 8, 16). In other words, given a number of bins
nbin, we can find a linear regression that derives α∗w as a
function of

√
E(w2) and E(|w|):

α∗w = c1 ∗
√
E(w2)− c2 ∗ E(|w|) (7)

where the coefficients c1 and c2 are predetermined from the
linear regression over the 6 distributions as discussed above
(e.g., c1 = 3.2 and c2 = −2.1 when nbin = 4).

As a result, for each mini-batch of training, SAWB first
computes E(|w|) and E(w2) from the full-precision copy
of weight, then uses (7) to compute α∗w per layer for quan-

Table 2. Square Error (SE) of the optimal and SAWB estimated
scaling factor of Layer 11 of CIFAR10 ResNet20 at different epoch
with 2-bit weight quantization

Epoch 1 40 80 120 160 200

Optimal SE 6.77 12.21 10.45 8.24 7.92 7.75
SAWB SE 6.94 12.43 10.64 8.40 8.13 7.98

tization. The quantized weight wq is used for both for-
ward/backward passes to obtain the weight gradient, which
is used to update the full-precision copy w for the next
round. Note that computation of E(|w|) and E(w2) does
not incur iterative algorithms, so it is computationally cheap
(i.e., O(n) complexity, where n is the number of weight
values).

To evaluate the effectiveness of SAWB, we compared the
quantization errors when using the optimal scale (obtained
via exhaustive search) vs. one from SAWB. Table 2 sum-
marizes the quantization error (in terms of square error, SE)
of the weight in layer 11 of the 2-bit quantized CIFAR10
ResNet. It is evident that α∗w determined by SAWB incurs
less than 3% additional SE at anytime during the training.

Figure 6. (a) Convergence plots for VGG and ResNet with and
without quantization. While VGG is less sensitive to the quan-
tization, ResNet suffers slower convergence when its shortcuts
are quantized. (b) Impact of shortcut quantization visualized via
root-mean-square (RMS) of weight gradient from the first shortcut
of CIFAR10 ResNet. Note that SAWB-2bit suffers low gradient
magnitude, implying slow progress in optimization.

5 QUANTIZATION IN THE PRESENCE OF
SHORTCUT CONNECTIONS

Throughout our quantization exploration, we observed that
the feed-forward neural networks such as AlexNet and VGG
behave more reliably compared to the networks with short-
cut connections (e.g., ResNet, (He et al., 2016b)). Figure
6(a) demonstrates this issue with two training cases, VGG
and ResNet20 models on CIFAR10, with and without 2-bit
weight/activation quantization. As shown, VGG’s training
curves for full precision and the 2-bit network track closely,
leading to almost identical test errors. On the other hand,
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Table 3. Validation error of CIFAR10 ResNet20/32/44/56 for quan-
tizing activation only, weight only, and both weight and activation.
(p,s) indicates (PACT,SAWB), respectively. “fpsc” indicates full-
precision shortcut. PACT-SAWB achieves accuracy ≤ 0.5% for
individual quantization, and ≤ 1% for quantizing both weight and
activation, compared to full precision baseline.

Layers 20 32 44 56

Full-Precision (32-bit) 8.49% 7.49% 6.84% 6.77%

W32-Ap2 9.51% 8.44% 8.02% 7.76%
W32-Ap2-fpsc 8.64% 7.72% 7.29% 7.01%

Ws2-A32 9.27% 8.80% 7.84% 7.45%
Ws2-A32-fpsc 9.08% 7.74% 7.39% 7.07%

Ws2-Ap2 10.77% 9.57% 9.39% 8.76%
Ws2-Ap2-fpsc 9.35% 8.36% 7.61% 7.48%

we can observe from the ResNet20 case that the training er-
ror for the 2-bit network decreases much slowly, indicating
disruption of learning in the SGD optimization.

We made a key observation that naively applying quantiza-
tion to the 1x1 convolution in shortcut connections nega-
tively impact accuracy, because the shortcuts play an impor-
tant role of flowing back-propagated gradient information
across the layers but the quantization fundamentally would
limit the flow of gradients. This phenomenon can be evi-
denced by measuring the magnitude of gradients. In Figure
6(b), we plot root-mean-square (RMS) values of gradients
in the convolution in the first shortcut of CIFAR10 ResNet
for the three cases: baseline, SAWB-2bit with and without
the full-precision shortcut (FPSC). As shown in the figure,
the magnitude of gradients is significantly small when the
shortcut is quantized. This can obstruct the sgd optimizer
from finding good local minima, slowing down the overall
progress in optimization.

It is also mentioned in (He et al., 2016a) that keeping the
shortcut connections more direct is beneficial to ease the
optimization and reduce over-fitting. In the same vein, we
explored an option of not quantizing the input activations
or the weights in the shortcut paths. As will be discussed in
depth in Section 6, our quantization with the full-precision
shortcuts achieves accuracy close to the full-precision base-
line for all the tested quantized ResNets. Note that the
shortcut in ResNet takes a negligible portion of the overall
compute, e.g., <1% for ImageNet-ResNet18.

6 EXPERIMENTS

We implemented PACT and SAWB in Tensorflow (Abadi
et al., 2015) using Tensorpack (Zhou et al., 2016) and stud-
ied several well-known CNNs: ResNet20/32/44/56 (He
et al., 2016b) for the CIFAR10 dataset, and AlexNet and
ResNet18/50 models for the ImageNet dataset. For com-

Table 4. CIFAR10: Comparison on test accuracy (%) and degrada-
tion for different bit-precision settings.

Name Baseline Quantized Degradation
< ResNet20: W2-A32 >

SAWB-fpsc 91.8 91.6 0.2
DoReFa 91.8 90.9 1.0
LQ-Nets 92.1 91.8 0.3
TWN 91.8 90.9 0.9
TTQ 91.8 91.1 0.6

< ResNet20: W32-A2 >
PACT-fpsc 91.5 91.4 0.2
DoReFa 91.5 90.1 1.4
ReLU6 91.5 91.0 0.5

< ResNet20: W2-A2 >
PACT-SAWB-fpsc 91.5 90.8 0.7
DoReFa 91.5 88.2 3.3
LQ-Nets 92.1 90.2 1.9

< VGG: W2-A2 >
PACT-SAWB-fpsc 93.8 93.8 0.1
LQ-Nets 93.8 93.5 0.3
QIP (lambda=0.5) 94.1 93.9 0.2

prehensive comparison with the state-of-the-art, we include
most of the recent 2-bit QNNs that used the same experimen-
tal settings (including ternary quantizations that effectively
use 2-bits), and compare the accuracy numbers from their pa-
pers: LQ-Nets (Zhang et al., 2018), TWN (Li & Liu, 2016),
TTQ (Zhu et al., 2017), and QIP (Jung et al., 2018), Bal-
ancedQ (Zhou et al., 2017), WEQ (Park et al., 2017), WRPN
(Asit Mishra, 2018b), and LearningReg (Choi et al., 2018).
In case of ResNet50, for more exhaustive comparison, we
further include notable QNN implementations that use more
than 2-bits: Apprentice (Asit Mishra, 2018a), and UNIQ
(Baskin et al., 2018). We also implemented DoReFa-Net
(Zhou et al., 2016) using the same setting as PACT-SAWB
(i.e., they share the same baseline).

Detail information about our CNN implementation as well
as our training settings can be found in Appendix A. Un-
less mentioned otherwise, ReLU following BatchNorm is
used for activation function of the convolution (CONV)
and fully-connected (FC) layers except the last FC using
Softmax. Note that the same hyper-parameters from these
full-precision CNN baselines are used for all the QNN exper-
iments. For PACT, we only replace ReLU with PACT. The
networks are trained from scratch and the first/last layers
are not quantized, following the common practice. (Zhou
et al., 2016; Asit Mishra, 2018b).

6.1 CIFAR10 Experiments

We first evaluate our activation and weight quantization
schemes using CIFAR10 ResNet with (20,32,44,56) layers.
Table 3 summarizes the accuracy for quantizing activation
only, weight only, and both weight and activation. Individ-
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Table 5. ImageNet: Comparison on top-1 test accuracy (%) and
degradation. 2-bit QNNs except for Apprentice and UNIQ.

Name Baseline Quantized Degradation
< AlexNet >

PACT-SAWB-fpsc 58.3 57.2 1.1
LQ-NETs 61.8 57.4 4.4
QIP (lambda=0.0) 58.1 55.7 2.4
DoReFa-Net 55.1 53.6 1.5
HWGQ 58.5 52.7 5.8
BalancedQ 57.1 55.7 1.4
WEQ 57.1 50.6 6.5
WRPN-x1 57.2 51.3 5.9
WRPN-x2 60.5 55.8 4.7
WRPN-x2, W2-A4 60.5 57.2 3.3
LearningReg 58.0 54.1 3.9

< ResNet18 >
PACT-SAWB-fpsc 70.4 67.0 3.4
LQ-NETs 70.3 64.9 5.4
QIP (lambda=0.0) 69.2 65.4 3.8
DoReFa 70.2 62.6 7.6
HWGQ 67.3 59.6 7.7
BalancedQ 68.2 59.4 8.8
LearningReg 68.1 61.7 6.4

< ResNet50 >
PACT-SAWB-fpsc 76.9 74.2 2.7
LQ-NETs 76.4 71.5 4.9
Apprentice (W2-A8) 76.2 71.5 3.4
UNIQ (W4-A8) 76.0 73.4 2.6

ual quantization incurs only marginal accuracy degradation,
and the full-precision shortcut (post-fix “-fpsc”) further im-
proves the accuracy to be within 0.5% of the full-precision
accuracy. Putting it all together, PACT-SAWB with the
full-precision shortcut achieves accuracy within 1% of the
full-precision accuracy across all the variants of CIFAR10
ResNets.

Next, we compare accuracy results of PACT-SAWB on CI-
FAR10 with the other state-of-the-art QNN schemes. To
present a larger coverage, we compare results from both
ResNet and VGG. As shown in Table 4, PACT and SAWB
achieve accuracy among the highest and accuracy degrada-
tion among the lowest. In particular, SAWB-fpsc and PACT-
SAWB-fpsc achieve slightly lower accuracy than LQ-Nets
and QIP, respectively, but has lower accuracy degradation
compared to them.

6.2 ImageNet Experiments

Next, we evaluate accuracy of our 2-bit QNN schemes on
ImageNet dataset. As can be seen in Table 5, PACT-SAWB
achieves the highest absolute accuracy as well as the lowest
accuracy degradation for 2-bit QNN on all three networks
(AlexNet, ResNet18 and ResNet50). In fact, to the best of
our knowledge, PACT-SAWB’s ResNet accuracies (67.0%
and 74.2% for ResNet18 and ResNet50) are the highest ever
reported. The absolute ResNet50 accuracy is even higher

Table 6. Impact of shortcut precision for CIFAR10 ResNet20.

Shortcut precision 16-bit 8-bit 4-bit 2-bit
Validation error (%) 9.28 9.31 9.40 10.7

than the accuracy results obtained with higher bit-width
in Apprentice and UNIQ. This first demonstration of 2-bit
ResNet50 showing less than 3% accuracy degradation is
a significant achievement with great potential for practical
use.

WRPN-x2 W2-A4 achieves accuracy on-par with our 2-bit
QNN, since it can regain the loss in accuracy by increasing
the network size (i.e., doubling output channel length). But
the enlarged network size can forfeit the system-level perfor-
mance gain achieved by the bit-width reduction. The impact
of reduced precision inference on the system performance
will be investigated deeper in Section 7.

6.3 Impact of Shortcut Precision

Table 6 shows the validation error for various shortcut pre-
cision in CIFAR10 ResNet20 (the rest of the layers except
the first/last layers are quantized into 2-bit). It is very inter-
esting to see that the accuracy degradation is negligible if
8-bit or larger bit-precision is assigned to the shortcuts. This
implies that the negative impact from quantizing 1x1 CONV
in shortcuts can be greatly relieved without keeping their
precision to 32-bits. It opens up a potential for reducing the
bit-precision for the sensitive layers of the neural nets such
as the first/last layers as well as the shortcut to gain better
system-level performance.

7 SYSTEM-LEVEL PERFORMANCE GAIN

In this section, we demonstrate the gain in system perfor-
mance as a result of bit-precision reduction from PACT-
SAWB.

7.1 System Setup

We consider a DNN accelerator system comprising of a
DNN accelerator chip, comprising of multiple cores, in-
terfaced with an external memory. Similar to the state-of-
the-art accelerator architectures such as (Fleischer et al.,
2018), each core consists of a 2D-systolic array of fixed-
point multiply-and-accumulate (MAC) processing elements
on which DNN layers are executed. Each core also con-
tains an on-chip memory, which stores the operands that
are fed into the processing array. Figure 7(a) describes the
architecture template of this system.

To estimate system performance at different bit-precision,
we studied different configurations of the DNN accelerator
each comprising the same amount of on-chip memory, ex-
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Figure 7. (a) System architecture and parameters. (b) Variation in MAC area with bit-precision. (c) Speedup at different quantizations for
inference using ResNet50 model.

ternal memory bandwidth, and occupying iso-silicon area.
First, we implemented a precision-configurable MAC unit
using a high-end commercial technology (14nm CMOS)
and measured the MAC area for the scaled bit-precision.
Note that MAC design for PACT-SAWB is simple with lit-
tle control overhead since it employs uniform quantization.
As shown in Figure 7(b), we achieved ∼14× improvement
in density when the bit-precision of both activations and
weights are uniformly reduced from 16 to 2-bits.

Next, to translate the reduction in area to improvement in
overall performance, we built an accelerator system with
a varying number of cores whose bit-precision for MAC
can be modulated. The peak compute capability (a num-
ber of operations, OPs) of the system is varied such that
we achieve iso-area at each precision. Using the 2d-array
size of 8x64 MACs, we can investigate the system with a
large range of peak performance from 8 to 64 TOPs (cor-
responding to 16 to 2-bit MAC), covering the peak OPs of
the off-the-shelf accelerator platforms such as Xilinx Alveo
U200 (= 18.6 TOPs, 8-bits). Note that the total on-chip
memory and external bandwidth remains constant at all
precisions. We estimate the overall system performance
using DeepMatrix (Venkataramani et al.), a framework that
systematically characterizes and analyzes the performance
of DNNs on a shared memory accelerator via exploration
of the design space configurations (e.g., number of cores,
dataflow, memory bandwidth) defined on an architectural
template similar to Fig 7(a).

In the following section, we investigate two variants of
system performance evaluations, first to assess impact of
bit-precision reduction on system performance, and second
to compare the system performance gain with WRPN. In the
first evaluation, we use 8-bit for the high-precision compu-
tation (e.g., first/last layers) since we empirically observed
no accuracy loss with this setting. As discussed in Section
6.3, we chose 8-bit for the high-precision computation to

evaluate the most bit-optimized scenario. In the second
evaluation, on the other hand, we chose to have a fair com-
parison by conservatively using 16-bit for the high-precision
computation for both ours and WRPN.

7.2 Gain in Inference Performance

Figure 7(c) shows the gain in inference performance for
ResNet50. We study the performance improvement using
different external memory bandwidths, namely, a bandwidth
unconstrained system (infinite memory bandwidth) and two
bandwidth constrained systems at 32 and 64 GBps. In the
bandwidth unconstrained scenario, the performance gain is
limited by how amenable it is to parallelize the work using
all the MAC units available in the system. In this case, we
see a near-linear increase in performance for up-to 4 bits
and a small drop at extreme quantization levels (2 bits).

Practical systems, whose bandwidths are constrained, (sur-
prisingly) exhibit a super-linear growth in performance with
quantization. For example, when external bandwidth is lim-
ited to 32 GBps, quantizing from 16 to 4 bits leads to a
4× increase in peak OPs but a 4.5× improvement in per-
formance. This is because, the total amount of on-chip
memory remains constant, and at very low precision some
of the data-structures begin to fit within the memory present
in the cores, thereby avoiding data transfers from the exter-
nal memory. Consequently, in bandwidth limited systems,
reducing the amount of data transferred from off-chip can
provide an additional boost in system performance beyond
the increase in peak OPs. Note that for the 4 and 2 bit preci-
sion configurations, we still used 8 bit precision to execute
the first and last layers of the DNN. If we are able to quan-
tize the first and last layers as well to 4 or 2 bits, we estimate
an additional 1.24× improvement in performance, motivat-
ing the need to explore ways to aggressively quantize the
first/last layers.
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Figure 8. Comparison of system performance between PACT and
WRPN. (a) Normalized images/sec, (b) Hardware utilization.

7.3 PACT-SAWB vs. WRPN

In PACT-SAWB, we compensate the impact of quantiza-
tion error by incorporating it during the training process.
An orthogonal approach, adopted in WRPN (Asit Mishra,
2018b), increases the number of channels in the layers,
which would add redundancy to the data-structures making
them more amenable to quantization. In this section, we
analyze how each approach impacts system performance.
We use AlexNet as the benchmark for this study, as PACT-
SAWB and WRPN achieve iso-accuracy (57.2%), albeit at
different quantization levels. PACT-SAWB quantizes both
weights and activations to 2 bits, whereas WRPN quantizes
weights to 2 bits and activations to 4 bits, while also dou-
bling the number of channels in the quantized layers. The
first and last layers are not quantized in both cases.

Figure 8(a) shows the classification throughput (normal-
ized number of images classified per second) achieved by
both techniques as the external memory bandwidth is var-
ied. We find that PACT-SAWB achieves 2.7∼3.1× speedup
over WRPN. The benefits stem from 3 factors: (i) PACT-
SAWB uses fewer computations, (ii) PACT-SAWB quan-
tizes both weights and quantization to 2-bits, as opposed to
just weights in WRPN, which allows us to pack more OPs
in given area budget (Figure 7(b)), and (iii) PACT-SAWB
uses less memory foot-print, which enables data-structures
to fit on-chip and benefit performance when the external
memory bandwidth is small. It is interesting to note that al-
though doubling channels leads to a 4× increase in OPs, our
benefits are roughly limited to 3×. This is because, the first
and last layers are not quantized and carried out in 16-bit.
Although the constant overhead this adds is relatively small
in terms of number of MAC operations, it is amplified by
nearly an order of magnitude difference in the cost of 2-bit
and 16-bit operations.

To further understand the reasons behind the speedup, Fig-
ure 8(b) compares the utilization of MAC array in case
of PACT-SAWB and WRPN. At lower bandwidths, PACT-
SAWB achieves a slightly better utilization compared to

WRPN. This is because of PACT-SAWB’s ability to have
a smaller memory footprint, which reduces the pressure
on the external memory bandwidth. However, at higher
bandwidths, the utilization achieved by WRPN is larger,
as doubling channels leads to increased data-reuse (higher
OPs/Byte). Nevertheless, the increase in utilization is not
commensurate with the higher OPs and bit-precision that
WRPN demands, which results in PACT-SAWB eventually
achieving substantial speedup.

8 CONCLUSION

In this paper, we propose novel techniques that target
weight and activation quantizations separately resulting in
an overall quantized neural network (QNN). The activa-
tion quantization technique, PArameterized Clipping acTi-
vation (PACT), uses an activation clipping parameter α that
is optimized during training to find the right quantization
scale. The weight quantization scheme, statistics-aware
weight binning (SAWB), finds the optimal scaling factor
that minimizes the quantization error based on the statistical
characteristics of the distribution of weights without per-
forming an exhaustive search. Furthermore, we provide an
innovative insight for quantization in the presence of short-
cut connections, which motivates the use of high-precision
for the shortcuts. Our evaluations show that the proposed
quantization scheme outperforms the other prior quantiza-
tion techniques. We demonstrate that using a 2-bit QNN,
we achieve <1% accuracy loss for CIFAR10 tasks, and the
best accuracy relative to other state-of-the-art quantization
techniques for ImageNet tasks. Our demonstration of 2-bit
ResNet50 showing less than 3% accuracy degradation is
a significant achievement with great potential for practical
use. Using a detailed hardware accelerator system perfor-
mance model, we show that relative to the more recently
proposed WRPN approach for quantization (Asit Mishra,
2018b), PACT-SAWB not only achieves iso-accuracy but
also achieves 2.7∼3.1× speedup.
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A CNN IMPLEMENTATION DETAILS

The CIFAR10 dataset (Krizhevsky & Hinton, 2010) is an im-
age classification benchmark containing 32× 32 pixel RGB
images. It consists of 50K training and 10K test image sets.
We used the “full pre-activation” ResNet structure (He et al.,
2016a) as well as the VGG (Simonyan & Zisserman, 2014)
structure, which are most popular. The ResNet consists of
a CONV layer followed by 3 ResNet blocks (18/30/42/54
CONV layers with 3x3 filter, depending on choice) and a
final FC layer. The VGG consists of 3 blocks of 2-CONV
followed by a max-pooling layer, followed by one FC layer
and an SVM, similar to (Li & Liu, 2016). We used SGD
with momentum of 0.9 and learning rate starting from 0.1
and scaled by 0.1 at epoch 60, 120. L2-regularizer with

decay of 0.0002 is applied to weight. The mini-batch size
of 128 is used, and the maximum number of epochs is 200.

The ImageNet dataset (Russakovsky et al., 2015) consists of
1000-categories of objects with over 1.2M training and 50K
validation images. Images are first resized to 256 256 and
randomly cropped to 224224 prior to being used as input to
the network. We used a modified AlexNet, ResNet18 and
ResNet50.

We used AlexNet network (Krizhevsky et al., 2012) in which
local contrast renormalization (R-Norm) layer is replaced
with BatchNorm layer. We used ADAM with epsilon 10−5

and learning rate starting from 10−4 and scaled by 0.2 at
epoch 56 and 64. L2-regularizer with decay factor of 5 ×
10−6 is applied to weight. The mini-batch size of 128 is
used, and the maximum number of epochs is 100.

ResNet18 consists of a CONV layer followed by 8 ResNet
blocks (16 CONV layers with 3x3 filter) and a final FC layer.
"full pre-activation" ResNet structure (He et al., 2016a) is
employed. ResNet50 consists of a CONV layer followed by
16 ResNet “bottleneck” blocks (total 48 CONV layers) and
a final FC layer. "full pre-activation" ResNet structure (He
et al., 2016a) is employed.

For both ResNet18 and ResNet50, we used SGD with mo-
mentum of 0.9 and learning rate starting from 0.1 and scaled
by 0.1 at epoch 30, 60, 85, 95. L2-regularizer with decay
of 10−4 is applied to weight. The mini-batch size of 256 is
used, and the maximum number of epochs is 110.


