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We present a method wherein a sequence of convergent activa-

tion functions enable high-speed training of deep spiking neural

networks. This method is accessible, easily implementable and gen-

eralizable to a variety of network structures. By democratizing the

use of neuromorphic processors for deep learning, the Whetstone

method enables non-neuromorphic-computing experts to use these

cutting-edge platforms and achieve corresponding improvements

in performance-per-Watt.

Current image processing methods are largely dominated by

deep neural networks and, in particular, convolutional neural net-

works. While machine learning methods have even surpassed hu-

man performance in some tasks [5], they run best on power-hungry

GPUs [1]. In contrast, there are a growing number of biologically in-

spired neuromorphic architectures offering dramatic improvements

in performance-per-Watt compared to GPUs [3, 6, 8, 9]. However, it

is often difficult to achieve state-of-the-art algorithmic performance

using spiking neural networks (SNNs), and few of these platforms

provide learning on-chip.

The Whetstone method bridges these two spaces by iteratively

converging towards a spiking version of a deep neural network.

During the training process, the activation function at each layer

is progressively sharpened towards a threshold activation. This

method is successful with both sigmoid activations and bounded

rectified linear units. Since we only need to modify the activation

function, Whetstone is widely applicable to a range of network

designs and connectivitiy (e.g. densely connected layers, convo-

lutional layers). We have implemented Whetstone as a package

extending the Keras deep learning library [2]. By implementing

Whetstone as a variety of custom components within Keras, we

achieve a drop-in workflow.
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The overall task is the same as that of any neural network, andwe

abstract this task as evolving weightsWt such that f (Wtx) →t ŷ,
where x is the input set, f is a non-linear activation function and

ŷ is the best local prediction (subject to some loss function) of the

ground truth y. In traditional neural networks, the function f gen-

erally has a simple gradient to assist fast convergence using backpr-

popogation and a stochastic gradient descent algorithm. However,

these activation functions are incompatible with the spiking neuron

models used by most neuromorphic platforms, and spiking neu-

rons offer distinct power advantages, see [4, 8, 9]. The Whetstone

method is centered on using a sequence of convergent activation

functions fk , each one continuous, that approach (in measure) the

target threshold activation function fk →k T (x ) := x ≥ 0. In short,

we are interested in limk,t fk (Wtx). Unfortunately, since in gen-

eral the convergence in neither t nor k is uniform, the interchange

of limits is poorly defined. Though, through experimentation and

heuristics, we have seen strong performance in a variety of tasks

and network structures.

For experimentation and initial release, we implemented Whet-

stone as a python package extending Keras. Whetstone spiking

activation functions are drop-in replacements for the built-in acti-

vation functions, and a sharpening callback automatically iterates

the activation functions towards a threshold activation (Fig. 2). Af-

ter training, the weights are directly exportable. Interestingly, in

our experiments we observed trade-offs not usually seen in conven-

tional deep neural networks (DNNs). Unsurprisingly this suggests

that best-practices for network design may differ between DNNs

and SNNs. Some compelling observations include:

• Larger convolutional filters (e.g. 5 × 5 or 7 × 7) improve

performance and stability of training.

• Resilient, fault-tolerant output codings are critical.

• Sigmoid activation, while still suffering vanishing gradient,

provides increased stability. Modified rectified linear units

provide the best network performance.

• The process is sensitive to the choice of optimizer. As exam-

ples, RMSProp [10] and Adadelta [11] offer fast and reliable

convergence. Other standard optimizers (e.g. Adam [7]) are

unstable.
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Figure 1: Training, testing and spiking testing accuracy for a standard deep convolutional network on the MNIST dataset. The
network has six convolutional layers and 11 total layers.

Figure 2: A schematic of Whetstone’s python implementa-
tion. By interjecting at the same level of abstraction asKeras,
we leverage existing work in Tensorflow, Theano, CUDA,
and the target platform.

This approach provides various advantages over other methods

for designing or training SNNs. Foremost, the method is quick, ac-

cessible, and platform-independent. Each layer involves one timestep,

so no additional time cost is incurred as in rate and temporal coding.

The requirements on the target neuron model are simple (integrate

and fire). Hence, resulting networks have wide applicability. And

while, in general, a spiking version of a neural network may show

decreased performance, most algorithms remain competitive with

approximately 0.5% loss in accuracy. For example, with a standard

network design we reach an overall maximum MNIST accuracy of

99.37% max (99.22% median) directly (i.e. no ensemble methods, no

data augmentation), see Figure 1.
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