
Deploying deep ranking models for search verticals
Rohan Ramanath, Gungor Polatkan, Liqin Xu, Harold Lee, Bo Hu, Shan Zhou

LinkedIn Corporation
{rramanath,gpolatkan,lxu,hlee,bohu,shzhou}@linkedin.com

1 INTRODUCTION
Capturing the semantic similarity between a query and a set of
documents is a well studied problem in the Information Retrieval
community [3, 10, 11].

LinkedIn Talent Solutions (LTS) provides innovative tools to help
talent searchers (e.g. recruiters, hiring managers and corporations)
around the world become more successful at talent acquisition.
One important challenge is to translate the criteria of a hiring po-
sition into a search query; the searcher has to understand which
skills are typically required for a position, which companies are
likely to have such candidates, which schools the candidates are
most likely to graduate from, etc. Moreover, the knowledge varies
over time. As a result, as indicated by LinkedIn search log data [7],
often multiple attempts are required to formulate a good query.
To help the searcher, LTS search provides advanced targeting cri-
teria called facets (i.e. skills, schools, companies, titles and many
more). The query can be entered as free text, a facet selection or
the combination of the two. This results in queries where semantic
interpretation and segmentation becomes important, e.g. in the
query “java” or “finance” the searcher could be searching for a
candidate whose title contains the word or someone who knows a
skill represented by the word. Relying on exact term or attribute
match in faceted search for ranking is sub-optimal. In this paper,
we investigate a method to improve the solution to the matching
and ranking problem rather than focus on the query formulation.

Latent semantic models are commonly used to map a noisy high
dimensional query to a low-dimensional representation to make the
matching problem tractable [6]. We extend latent semantic models
with a deep structure by projecting queries and talent attributes
into a shared low-dimensional space where the relevance of a talent
given a query is readily computed as the distance between them. In
this paper, we propose an architecture in which a neural network
scoring a query-member pair is split into 3 semantic pieces such
that each piece is scored on a separate system with its own char-
acteristics. Additionally, we implement and experiment with one
specific instance of this architecture in production, computing se-
mantic similarity (used in a downstream learning to rank model [5])
using online low-dimensional vector representations in a scalable
way (being able to score millions of LinkedIn members) without
compromising system performance or site stability.

2 MODELING
The problem of talent search can be formulated as follows; given a
query q by a recruiter r , rank a list of candidate LinkedIn members
m1,m2, ...,md in decreasingly relevant order by learning a function
(in this case a neural network scoring a query-member pair) , f :
q(r ,mj ) 7→ si, j ∈ R. For the purposes of this paper, we make
the model independent of the recruiter (r ). Since our goal is to
productionize this function, we study the characteristics of each

Figure 1: A typical siamese networkwith an additional cross-
ing network. Although, this is trained as a single network us-
ing query log data, the architecture is split into 3 semantic
components during inference, which are implemented on
separate physical systems

system, and consequently each semantic piece (Figure 1), required
to serve a search result in Section 3.

In literature there have been different efforts trying to address
similar problems. The models considered [8, 9, 13, 14] were point-
wise methods with the focus on learning a function that scores the
similarity between the query and a candidate(s). Our architecture
in Figure 1 is a generalization of such models. In such a framework,
the degree of model complexity of each module is dictated by 1)
implementation and serving constraints, 2) requirements specified
by a Service Level Agreement (SLA).

One drawback of the models in [8, 9, 13, 14] is that they only
consider text data. In LTS search, the query and talent are repre-
sented by multiple sources of data (profile picture, education, job
history, skills and many more facets) and not just text. The prob-
lem of combining heterogeneous data of different modalities adds
complexity to the ranking model. In our experiments, we use the
late crossing [13] variant of siamese networks [4] since it allows us
to compute scores within strict SLAs to be served online.

As shown in Figure 2, the input to the model is a combination of
text and facet attributes. Each input layer converts the incoming
attribute / text (ngram) from a list of categorical features to a single
embedding (via pooling) and the aggregation layer simply stacks
embeddings from multiple attributes to one vector. Since the mem-
ber arm has a richer source of input data, there is more opportunity
to learn representative structures. This intuition manifests itself via
a deeper and structurally richer (i.e. convolutions) member arm that
eventually produces the member representation. The shorter query
arm leverages query text and facets selected by the recruiter in the
search UI to produce a query representation. The similarity layer
(fully-connected, cosine, or any distance function) processes the
query and member representations to produce a score that captures
semantic similarity.



Figure 2: The two armarchitecturewith a shallowquery arm
(it is scored at real time) and a deep member arm. Note that
the member arm is not only wider but also can be deeper.

3 SYSTEM DETAILS
There are 3 sections of the scoring flow serving a query-member
pair: (1) Offline distributed processing (e.g. Hadoop, Spark) for
member network, (2) Online REST Service [2] for query network,
and (3) Galene [12], the LinkedIn search-as-a-service infrastructure
for cross network as a final scoring.

The offline distributed piece is used mostly for member network
processing. Since the member profiles (education, job history, skills
and many more facets) are known offline, we pre-compute the
member representation using Tensorflow [1] on Hadoop, compress
and store this resultant vector in the forward index of the searcher.
One can tolerate infrequent updates to the member representation
because the member profile information is relatively static. Addi-
tionally, since the member representation is evaluated offline, we
can experiment with more aggressive architectures (and depth) for
the member arm.

The online REST service is responsible for processing each search
request. The query is evaluated and processed on the fly to extract
query features like trigrams of text and search facets such as skill,
title, company. The query network uses this as the input to produce
a query representation as the output. Since the module is scored at
real time and has tight SLAs, the network complexity is limited by
the time to score. To simplify the discussion, let us assume we just
have one attribute, i.e. title (t) on both the query and member side.
Everything that follows can be easily extended to any number and
types of attributes. A key-value store is used to store attribute, facet
vectors, i.e. one vector for every title ti (or one vector for every
ngram if we consider ngrams of the raw text as the query feature).
The search frontend parses the query (the tagged textual query and
selected facet) to determine all the titles targeted by the viewer. The
vectors corresponding to all the targeted titles are retrieved and
the query arm of the network is evaluated in the search frontend.
The resultant query representation is then inserted into the query
meta data in the call to the search backend. Although evaluating
the query arm can be computationally expensive (depending on
the depth), this happens only once for a search request unlike the
member arm of the network. An alternate solution could involve

Figure 3: Implementation of the query and member similar-
ity within the search infrastructure.

pre-computing and storing the query representation for the head
queries and then directly retrieving them. However, further analysis
of the query distribution did not reveal a power law, mostly because
of the complexity introduced by facets and their interaction with
the free-form text query.

The third piece of the production pipeline is the LinkedIn search-
as-a-service infrastructure, Galene. The offline generated member
representation and REST service generated query representation
are unified on the search nodes where the final piece of the scorer is
evaluated. Galene is built over Lucene and most concepts discussed
here will apply to other search frameworks. Sankar and Makhani
[12] give a good overview of the Galene stack and the life cycle of a
search query is shown in Figure 3. An important design decision in
Galene that provides context to this work is that the backend (fed-
erator, broker and searcher in Figure 3) should be self-sufficient and
is not allowed to make external service calls. This design allowed
for the search backend to be run against a suite of integration tests
that evaluate the quality of the search index and ranking models
before deployment. A side affect of this design is that it prevents one
from using an external key-value store to store the pre-computed
member representation. At request time, once the members have
been retrieved for the query q, each member’s representation (via
the forward index) along with the query representation (via the
request to the backend) are evaluated via the similarity layer in the
searcher to produce a score for every query-member pair. This is
then used as a feature in the ranking model.

4 RESULTS AND CONCLUSION
The system (Section 3) was ramped to 100% of the LTS traffic and the
feature generated by the network (top 3 most important features
in the model) is currently being used to rank search results. In
terms of system performance, there was no statistically significant
difference in the latency (p50, p90, p99) of the search backend.
Scoring the query network on the search frontend added 3ms (p99)
to the latency which was well within the SLA requirements since
it needed to be computed only once per request.

To summarize our contributions, (1) We demonstrate the use
of NN based embeddings to improve the relevance of results, (2)
We propose an architecture that can be scored and leveraged by a
real time production service, (3) We show that our system scales
without any performance impact.

2



REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Joe Betz and Moira Tagle. 2013. Rest.li: RESTful Service Architecture at Scale.
(Feb. 2013). Retrieved December 20, 2017 from https://engineering.linkedin.com/
architecture/restli-restful-service-architecture-scale

[3] Danushka Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka. 2007. Measuring
semantic similarity between words using web search engines. www 7 (2007),
757–766.

[4] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1994. Signature verification using a" siamese" time delay neural network. In
Advances in Neural Information Processing Systems. 737–744.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[6] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American society for information science 41, 6 (1990), 391.

[7] Viet Ha-Thuc, Ye Xu, Satya Pradeep Kanduri, Xianren Wu, Vijay Dialani, Yan
Yan, Abhishek Gupta, and Shakti Sinha. 2016. Search by Ideal Candidates: Next
Generation of Talent Search at LinkedIn. In Proceedings of the 25th International
Conference Companion on World Wide Web (WWW ’16 Companion). International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 195–198. https://doi.org/10.1145/2872518.2890549

[8] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-
ral network architectures for matching natural language sentences. In Advances
in neural information processing systems. 2042–2050.

[9] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management. ACM, 2333–2338.

[10] Michael Mohler and Rada Mihalcea. 2009. Text-to-text semantic similarity for
automatic short answer grading. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics. Association
for Computational Linguistics, 567–575.

[11] MAndrea Rodríguez andMax J. Egenhofer. 2003. Determining semantic similarity
among entity classes from different ontologies. IEEE transactions on knowledge
and data engineering 15, 2 (2003), 442–456.

[12] Sriram Sankar and Asif Makhani. 2014. Did you mean “Galene”? (June 2014).
Retrieved December 15, 2017 from https://engineering.linkedin.com/search/
did-you-mean-galene

[13] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016.
Deep Crossing: Web-scale modeling without manually crafted combinatorial
features. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 255–262.

[14] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In Proceedings of the 23rd International Conference on World Wide Web.
ACM, 373–374.

3

https://engineering.linkedin.com/architecture/restli-restful-service-architecture-scale
https://engineering.linkedin.com/architecture/restli-restful-service-architecture-scale
https://doi.org/10.1145/2872518.2890549
https://engineering.linkedin.com/search/did-you-mean-galene
https://engineering.linkedin.com/search/did-you-mean-galene

	1 Introduction
	2 Modeling
	3 System Details
	4 Results and Conclusion
	References

