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ABSTRACT

This paper presents a memory-efficient LSTM inference engine
using a new sparse matrix format with limited synaptic connec-
tion patterns. The proposed relaxed pruning uses soft threshold-
ing which removes infrequent connection patterns. The initial
experimental results show that memory requirement reduces by
1.52~2.05x over the widely used CSC format depending on the
level of sparsity in weight matrices. This improvement comes with
negligible accuracy degradation by allowing additional training
epochs. Also, the relaxed pruning provides an opportunity to im-
prove inference speed with proper hardware architecture support.
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1 INTRODUCTION

The capability of machine intelligence has been significantly im-
proved over the past decade owing to the enhanced compute power
of the recent processors [10, 12]. As deep learning has performed
extremely well in vision-related tasks, inference engines for Convo-
lutional Neural Networks (CNNs) were mainly focused and devel-
oped [1, 2, 6, 9]. According to the report from Google, however, the
percentage of the server usage on CNN is negligible compared to
that of LSTM/MLP [4]. This implies that the research effort needs
to be expanded to improve performance/energy-efficiency of LSTM
(or MLP) inference engines. Since the complexity of LSTM is higher
than MLP, we will focus on improving energy-efficiency of the
LSTM inference engine. The challenge here is that there is no op-
portunity of data reuse in fully-connected (FC) layers (little chance
of performance improvement in LSTM). Note that LSTM consists of
eight FC-layer computations [8].

There have been several approaches to improve efficiency of the
LSTM inference engine [5, 11]. In [11], LUT-based multipliers are
used to improve energy-efficiency of the LSTM inference engine.
However, weight parameters are fixed to 4-bit limiting its actual use
in LSTM applications requiring higher bit-precision. In [5], authors
presented an algorithm to balance out the computation loads on
processing elements (PEs) to improve performance by iteratively
changing the connections to be pruned. Also, it handles the sparsity
with the conventional CSC data format. In this paper, we present a
new sparse matrix format with relaxed pruning that minimizes the
data to be fetched from external memory regardless of the sparsity
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level. This helps the hardware accelerator keep performance even
when the sparsity is lower.

2 HUFFMAN-CODED NONZERO INDICATION

To overcome the memory bottleneck incurred by the large weight
space in LSTM layers, weight quantization and pruning are nor-
mally used [5]. These techniques make the synaptic connections
sparse resulting in a lighter neural network (Fig. 1(a)). The pruning
simply thresholds the weight values to cut weak connections. In
the simple example shown in Fig. 1(a), 0.4 is used as a threshold
making the sparsity 62.5%.

The conventional CSC format can be used to efficiently represent
the sparse weight matrix [5]. The CSC format, however, is inefficient
when the network becomes less sparse as it needs to send nonzero
elements as well as row indices. As the size of matrix becomes larger,
the required bit-width to represent row index increases. When the
density of a 1024x1024 matrix exceeds 45%, the size of data to be
fetched by using CSC format becomes larger than simply sending
all data (Fig. 1(b)).

Instead of sending row indices, we can simply send nonzero
indication bit-stream and use simple on-chip counters to identify
the locations. To make the bit stream memory-efficient, we encode
the stream with Huffman coding (Huffman-coded Nonzero Indication
(HNI)). This reduces the number of bytes to travel over the expensive
external memory interface. The example in Fig. 1(a) encodes the
symbols with length of 4 (symLen=4).

The difference between CSC and HNI format is in the position
identifier. Note that nonzero elements must be sent in both formats
(Fig. 1 assumes 12-bit per element). Since the row/column length
is four, 2-bit is required to represent row index in the CSC format.
As the size of the weight matrix gets bigger, the required bit-width
increases as well. For instance, 10-bit is needed for each entry in
row index vector of a 1024x1024 matrix. The compression ratios are
compared in Fig. 1(b) for the 1024X1024 weight matrix. For highly
sparse matrix (10% density), the improvement of HNI format over
the CSC format is 1.41x. The improvement in compression ratio
increases to 1.90x when the density becomes 63%.

3 RELAXED PRUNING

The proposed HNI format provides additional benefit in memory
efficiency. This is done by the modified pruning algorithm, named
relaxed pruning. So far, pruning algorithms were applied by using
hard thresholding as shown in Fig. 2(a). Instead, it is possible to
apply pruning by allowing a don’t-care region (Fig. 2(a)). In this
region, the synaptic connection can be either kept or disconnected
(analogous to don’t-care term in digital logic). The relaxed pruning
keeps the sparsity level same while finding the synaptic connection
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Figure 1: The proposed sparse matrix format: (a) Data reduction by using Huffman-coded Nonzero Indication (HNI) format
after naive pruning and (b) compression ratio using sparse matrix formats depending on the sparsity of a 1024x1024 weight
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Figure 2: Relaxed pruning: (a) Huffman symbol reduction by limiting the synaptic connection patterns using relaxed pruning
and (b) negligible accuracy degradation on speech recognition after allowing additional retraining epochs.

pattern that is more frequent in occurrence. This reduces the av-
erage length of Huffman codes. The detailed algorithm of relaxed
pruning is not provided here due to the limited space.

One may argue that the accuracy of LSTM algorithm may de-
grade as the relaxed pruning limits the synaptic connection patterns.
The experimental result in Fig. 2(b) shows that the accuracy degra-
dation is negligible (only 0.2%) in speech recognition application
by allowing 11 additional retraining epochs. The dataset used for
this simulation is TIMIT dataset [3] and the LSTM network has a
structure of (Input:39 - LSTM:512 - LSTM:512 - Output:62).

The impact of relaxed pruning may vary by symbol length. Ta-
ble 1 summarizes the improvement in memory requirement with
different symbol lengths. Here, symLen=8 means that nonzero in-
dication bit-stream is grouped by 8-bit to make one symbol. With
symLen=8, the relaxed pruning additionally reduces the total mem-
ory footprint by 8% compared to the HNI format. This improvement
is influential as the energy (pJ/bit) of external memory access is 23x
higher than that of PE operation [6]. The relaxed pruning not only
reduces memory footprint, but also improves decoding speed as the
average code-length reduces by 27.9% with symLen=8. As the Huff-
man decoding is a sequential process, the reduction in code-length
is extremely important in improving hardware throughput. Also,
the reduction in the number of symbols (21.3%) lowers the on-chip
LUT size for storing the Huffman tree [7]. These additional savings
with relaxed pruning make the HNI format suitable for hardware

Table 1: Improvement of memory-efficiency by using re-
laxed pruning over HNI format

symLen Nonzero | Nonzero Total Huffman Symbol
Element | Indication | Data Size | Code Length | Reduction
4 0.00% 6.31% 1.72% 4.67% 0.00%
6 0.00% 20.50% 5.56% 18.08% 1.88%
8 0.00% 29.58% 8.00% 27.91% 21.33%

implementation. The parallel Huffman decoders and detailed data
controllers should be designed to make a high-performance LSTM
inference engine. The parallel computations (optimized dataflow)
of independent LSTM cell gates will maximize the inference speed
as well.

4 CONCLUSION

In this brief paper, we proposed a new sparse matrix format to
reduce required memory footprint of LSTM inference engines. The
relaxed pruning is developed to minimize memory footprint even
further and to possibly improve LSTM hardware for faster inference.
The performance improvement can be expected with the proper
design of parallel Huffman decoders and the exploration of system
parameters to maximize computation speed. Thus, the extensive
study on architecture support needs to be followed to design a
highly-efficient LSTM inference engine.
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