
Systems Optimizations for
Learning Certifiably Optimal Rule Lists

Nicholas Larus-Stone
Computer Lab, University of

Cambridge
nl363@cl.cam.ac.uk

Elaine Angelino
EECS, UC Berkeley

elaine@eecs.berkeley.edu

Daniel Alabi, Margo Seltzer
SEAS, Harvard University

{alabid@g, margo@eecs}.harvard.edu

Vassilios Kaxiras
Belmont High School

vassilioskaxiras@gmail.com

Aditya Saligrama
Weston High School

20saligramaa@my.weston.org

Cynthia Rudin
Duke University

cynthia@cs.duke.edu

1 INTRODUCTION
Decision trees are an extremely in�uential prediction technique
in AI. They are interpretable, simple to store, and easy to use [4].
However, not enough work has been done on speeding up the
creation of decision trees for large datasets. As big data becomes
even more common in machine learning applications, decision
trees risk falling in disuse due to computationally prohibitive con-
struction costs. This work focuses on a set of optimizations that
aids with the construction of a speci�c subset of decision trees:
one-sided decision trees, also known as decision lists or rule lists
[12]. Our goal is to �nd the rule list that is provably optimal with
respect to our objective function, the regularized empirical risk,
for a given set of pre-mined rules. Our algorithm, Certi�ably Opti-
mal RulE ListS (CORELS), uses a combination of tight bounds and
systems optimizations to achieve reasonable runtimes for moder-
ately sized real datasets [1, 2]. Our implementation can be found at
https://github.com/nlarusstone/corels.

Finding the optimal rule list from a set of rules is a computation-
ally hard combinatorial problem with no polynomial-time approx-
imation. Most decision tree construction strategies solve this by
quickly �nding an approximate solution through greedy methods
[4, 11]. Other �elds solve similar computationally hard combinato-
rial problems through the use of branch-and-bound algorithms[5].
Traditionally, branch-and-bound has only been applied to small
problems, because the search space is otherwise enormous, even
when tight bounds allow for the pruning of the space. Our previous
work presents a branch-and-bound search strategy, full description
of CORELS, and proofs of the bounds we use [1, 6]. Unlike prior
greedy approaches, branch-and-bound allows us to both �nd and
certify the optimal rule list.

A rule list is composed of an ordered list of rules, an example of
which can be seen in Fig 1. Rules are features or conjunctions of
features that uniformly classify a subset of the observations. We
generate rule lists by adding a rule to the end of a pre-existing rule

if (aдe = 18 − 20) and (sex =male ) then predict yes
else if (aдe = 21 − 22) and (priors = 2 − 3) then predict yes
else if (priors > 3) then predict yes
else predict no

Figure 1: Example optimal rule list that predicts two-year
recidivism for the ProPublica COMPAS dataset (122 rules),
found by CORELS, across 10 cross-validation folds.

list. For a given rule list, any longer rule list that starts with the same
rules will make the same mistakes as the shorter one. To encapsulate
this relationship, we call the original rule list a parent and the longer
rule list a child. We calculate both how many observations the list
incorrectly classi�es as well as a lower bound on the number of
mistakes that can be made by any child rule lists. Calculating each
of these metrics from scratch each time would be ine�cient; instead,
metrics are calculated incrementally using metadata recorded for
the parent rule list. The incremental computation takes advantage
of a specialized, space-e�cient pre�x tree by reusing previous
computation from parent rule lists. We systematically search the
entire space of rule lists, evaluating them in an order speci�ed
by our search policy; for example, a breadth-�rst search policy
examines shorter rule lists before longer ones.

Our objective function combines the number of incorrectly clas-
si�ed observations, normalized to measure misclassi�cation error,
with a regularization term that penalizes longer rule lists. The max-
imum number of mistakes that a rule list makes provides a bound
for how well the children of that rule list could ever perform. Using
those two metrics, we are able to compare the potential perfor-
mance of all of a rule list’s children to the current best rule list we
have seen so far. If the best potential performance is worse than
the performance of a rule list we have already seen, then we know
it cannot be the optimal rule list, and thus we can prune it. We
also proved a suite of additional algorithmic bounds that interact
to aggressively prune the search space. In our implementation, we
exploit these bounds via several data structures. Together with ad-
ditional systems optimizations, our approach e�ciently searches
the space of rule lists to �nd a provably optimal solution.

In previous work, we performed experiments using the ProPublica
COMPAS dataset [7], focusing on the prediction problem of whether
or not an individual would recidivate within two years. This dataset
contains 122 rules; therefore, a brute force search of all possible
rule lists up to length 10 would require evaluating 5.0 × 1020 rule
lists. Due to our algorithmic bounds, CORELS examines only 28
million rule lists, a reduction of 1.8 × 1013. Between the bookkeep-
ing required to search and prune the state space and the numerous
bit vector operations required to evaluate each rule list, a non-
optimized implementation of our algorithm would not complete.
However, with CORELS, each evaluation takes only 1.3 µs, allow-
ing us to complete that moderately sized problem in 36s. Systems
optimizations, even on just a single processor, allow us to solve a
computationally hard problem of reasonable size in under a minute.

https://github.com/nlarusstone/corels


2 IMPLEMENTATION
Our algorithm is feasible due to the use of three core data struc-
tures. First, we use a pre�x tree to represent the search space. The
incremental nature of our algorithm requires that we store rule
lists that we examined but did not discard. The pre�x tree structure
allows us to e�ciently access values in a parent rule list to calculate
bounds for a new rule list. Second, we implement our scheduling
policy with a priority queue. Third, we use a symmetry-aware map
to implement one of our critical bounds. The map allows us to
compare and prune permutations of rule lists.

To support incremental execution, we use a pre�x tree to cache
rule lists that we have already evaluated and have not pruned.
Each node in the tree represents a rule, so any rule list can be
reconstructed by following a path from the root to a leaf in the tree.
The node stores metadata to aid in the computation of our bounds
including: the lower bound, objective value, and a list of unpruned
children. Nodes also have parent pointers, so each node is created
incrementally by using the parent’s bounds to calculate the new
bounds. This structure also means that a rule list can be represented
and passed around as a pointer to a single node in the tree or as
an ordered list of rules. In most cases the pointer is more e�cient,
though the list representation is useful as a hashable index.

We represent our worklist with a priority queue. This allows us
to try di�erent exploration orders simply by changing the priority
metric. We implement breadth-�rst search (BFS), depth-�rst search
(DFS), and a best-�rst search that can take a custom metric. Our
implementation supports ordering by the lower bound and the
objective, though any function that maps a pre�x to a real value in
a stable manner would work. In general, we �nd that ordering by
lower bound (best-�rst) yields the best results on most datasets.

To take advantage of the symmetry inherent to our problem,
we designed a data structure we call a symmetry-aware map. We
use this map to keep track of the best possible permutation of a
given set of rules. When a new permutation of that set of rules is
encountered, we add the new permutation to our pre�x tree only if
it is strictly better than the permutation we already have stored. We
experimented with multiple key types that could represent permu-
tations of rule lists and found that a series of simple optimizations
of the key and value types led to a 3x reduction in memory usage
for the map [8]. First, we decided that it was unrealistic for our
algorithm to operate on datasets with more than 216 rules, so we
changed the type that represented rules from a size_t to a short.
Next, instead of incurring overhead by using a STL set to represent
keys, we created a custom key type that was a chunk of memory
just large enough to hold all of the rules and the length of the rule
list. Finally, the value type has to record the actual order of the
rules in the rule list, but we were able to take advantage of the fact
that the key type already contained the ids of the rules. We took
advantage of this by using a byte array to remember the ordering
of the rules without storing the actual rule ids again.

An important part of our implementation is that we calculate
accuracy and other metrics using bit vector operations. Each rule
is represented as a bit vector, whose length is equal to the number
of items in the training set. Bit i is set to 1 if the rule evaluates true
for data item i and 0 otherwise. We use the high performance bit
vector rule library [13] that uses the GMP multiple-precision library

to represent and manipulate the vectors. This is more e�cient
than built-in C++ constructs such as a vector of bools or a bitset.
CORELS pro�ling shows that these bit vector operations account
for the majority of algorithm’s execution time. Thus, improving
the performance of these computations will improve algorithm
performance and is a promising direction for future work.

Each one of these structures and optimizations is critical for the
success of our algorithm. For example, we brie�y experimented
with a stochastic search policy that did not use a queue at all but
instead followed random paths from the queue to a leaf. However,
this search strategy performed worse than any strategy involving
our queue, so we proceeded only by using the queue.

Table 1 empirically validates the importance of data structure
design (speci�cally the symmetry-aware map) on several datasets
[3, 9, 10]. We conducted trials on a small personal laptop.1 The
method for both the tests using the map and the tests without the
map used lower-bound ordering (best-�rst search) in the queue
as described above.2 The symmetry-aware map led to an average
speedup of 8.83x in runtime and a reduction in memory usage
of 3.15x. On more computationally complex datasets, such as the
breast cancer dataset, the symmetry-aware map allows the problem
to be solved to optimality using less than 4GB of RAM, versus about
8.6GB without this optimization. This enables such problems to be
solved on almost all recent laptops.

Table 1: Average runtime (s) and memory usage (MB) for three
executions, on di�erent datasets, with and without the symmetry-
aware map, tested on a laptop with 2.6 GHz i7-6700HQ and 16GB
RAM, capped at 12GB. Standard deviations arewithin 1% of reported
values in all cases.

Dataset

Time
w/map

(s)

Memory
w/map
(MB)

Time
no map

(s)

Memory
no map

(MB) Speedup
Memory
savings

Number
of

examples
B. cancer 3,206 3,078 14,039 8,598 4.4 2.8 684
Haberman 8.5 61 33 104 3.9 1.7 307
MONKS-1 0.29 <0.1 0.4 <0.1 1.2 ∼ 1.0 432
MONKS-3 0.10 <0.1 0.1 <0.1 1.4 ∼ 1.0 432
Votes 8.3 44 24 79 2.9 1.8 436
NYPD 80 26 15,073 1,343 188.4 51.6 566,839
COMPAS 0.86 2.7 1.45 3.0 1.7 1.1 6,217

3 CONCLUSION
We demonstrated that it is possible to learn certi�ably optimal rule
lists, but only through a combination of algorithmic bounds, sys-
tems optimizations, and e�cient data structures. While much of
the theory in this area was developed in the 1980s and 1990s, to
the best of our knowledge there have been few dedicated systems
approaches that take advantage of modern hardware to work on
real problems. Future work on CORELS involves parallelizing the
algorithm both for a single machine with many cores and for dis-
tributed systems. Additionally, further scaling could be realized by
porting the algorithm to an FPGA. We are optimistic that other
classic AI algorithms may bene�t from investigations of systems
level optimizations.

12.6 GHz i7-6700HQ and 16GB of RAM.
2We set the regularization parameter λ to 0.01.



REFERENCES
[1] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin. Learning certi�-

ably optimal rule lists for categorical data. Preprint at arXiv:1704.01701, November
2017.

[2] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin. Learning certi�-
ably optimal rule lists for categorical data. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’17), 2017.

[3] K. Bache and M. Lichman. UCI machine learning repository, 2013. http://archive.
ics.uci.edu/ml.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi�cation and regression
trees. 1984.

[5] Jens Clausen. Branch and bound algorithms - principles and examples. 1999.
[6] S. Ertekin and C. Rudin. Learning customized and optimized lists of rules with

mathematical programming. Unpublished, 2017.
[7] J. Larson, S. Mattu, L. Kirchner, and J. Angwin. How we analyzed the COMPAS

recidivism algorithm. ProPublica, 2016.
[8] N. L. Larus-Stone. Learning Certi�ably Optimal Rule Lists: A Case For Discrete

Optimization in the 21st Century. 2017. Undergraduate thesis, Harvard College.
[9] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming.

23(5):1–18, 1990.
[10] New York Civil Liberties Union. Stop-and-frisk data, 2014. http://www.nyclu.

org/content/stop-and-frisk-data.
[11] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[12] R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, November

1987.
[13] H. Yang, C. Rudin, and M. Seltzer. Scalable Bayesian rule lists. In Proceedings of

the 34th International Conference on Machine Learning, ICML ’17, 2017.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.nyclu.org/content/stop-and-frisk-data
http://www.nyclu.org/content/stop-and-frisk-data

	1 Introduction
	2 Implementation
	3 Conclusion
	References

