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ABSTRACT
Machine learning is playing an increasingly significant role in
emerging mobile application domains such as AR/VR, ADAS, etc.
Accordingly, hardware architects have designed customized hard-
ware for machine learning algorithms, especially neural networks,
to improve compute efficiency. However, machine learning is typ-
ically just one processing stage in complex end-to-end applica-
tions, involving multiple components in a mobile Systems-on-a-
chip (SoC). Focusing only on ML accelerators loses bigger optimiza-
tion opportunity at the system (SoC) level. This paper argues that
hardware architects should expand the optimization scope to the
entire SoC.We demonstrate one particular case-study in the domain
of continuous computer vision where camera sensor, image signal
processor (ISP), memory, and NN accelerator are synergistically
co-designed to achieve optimal system-level efficiency.

1 INTRODUCTION
Mobile devices are the most prevalent computing platform of the
present day, and are dominated by the ARM architecture. A large
number of emerging mobile application domains now rely heavily
on machine learning; in particular, various forms of deep neural
networks (DNNs) have been instrumental in driving progress on
problems such as computer vision and natural language processing.
On mobile platforms, DNN inference is currently typically executed
in the cloud. However, the trend is to move DNN execution from
the cloud to the mobile devices themselves. This shift is essential to
remove the communication latency and privacy issues of the cloud
offloading approach.

The increasing use of DNNs in mobile applications places signif-
icant compute requirements on the mobile System-on-chip (SoC),
which must process tens of billions of linear algebra operations per
second within a tight energy budget. In response, there has been
significant effort expended on dedicated hardware to accelerate
the computation of neural networks. This is borne out in a prolif-
eration of designs for DNN accelerators (NNX), which typically
demonstrate high computational efficiency on the order of 0.4 –
3.8 TOPS/W on convolutional NN inference [12, 13, 15, 17]. This
is several orders of magnitude more efficient than typical mobile
CPU implementations.

Sadly, the efficiency benefits of hardware accelerators are largely
a one-time improvement, andwill likely saturate, while the compute
requirement of DNNs keep increasing. Using computer vision as an
example, today’s convolutional neural network (CNN) accelerators
are not able to perform object detection (e.g., YOLO[16]) in real
time at 1080p/60fps. As the resolution, frame rate, and the need
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Figure 1:Mobile SoC (left) and software stack (right). Shaded
components are used in continuous vision tasks.

for stereoscopic vision grows with the emergence of AR/VR use
cases, the compute requirement will continue to increase, while the
power budget remains constant, leaving a large gap.

Therefore, we must move from a narrow focus on hardware
accelerators to begin to consider system-level optimizations for ML
on mobile. Expanding the scope beyond the DNN accelerator to
consider the whole SoC, we emphasize three areas for optimization:
• Accelerator Interfacing : hardware accelerators must be
efficiently interfaced with the rest of the SoC for full benefit.
• Software Abstractions : for cross-platform compatability,
SoC details should be abstracted with a clean API.
• System Optimizations : Co-design of algorithms and the
various hardware blocks in the system.

Section 2 will describe these optimizations further, with a case study
in Section 3. We conclude in Section 4.

2 ML ON MOBILE SYSTEMS
We have already started to see changes in mobile systems in re-
sponse to the computational demands of deep learning methods.
Most notably, NNX components are now common in mobile SoCs,
e.g., the Neural Engine in the iPhoneX [2] and the HPU CNN co-
processor in the Microsoft HoloLens [7]. However, a significant
challenge still remains as to how to integrate NNX components
into the system. We identify three aspects from both hardware and
software perspectives.

Accelerator Interfacing There are two main challenges in in-
terfacing NNX IPs to the rest of the mobile hardware system: (1)
providing an efficient path to offload anNN invocation task from the
CPU to the NNX, and (2) providing sufficient memory bandwidth
for weights and activation data. In particular, the cache/memory
interface between the accelerator and the SoC is critical, since mod-
ern DNNs typically have very large parameter sets, which demand
high memory bandwidth to feed many arithmetic units [10].
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Our key insight is to leverage the L3 cache in the CPU cluster as
a bandwidth filter rather than directly interfacing the NNX with
the DRAM as some state-of-the-art NNX designs currently do [11].
This is achieved through the ARM Accelerator Coherency Port
(ACP) [3], which is available on ARM CPU clusters and allows
attached accelerators to load and store data directly to and from
the L3. In this way, the NNX can also take advantage of L3 cache
features in the CPU cluster such as prefetching,cache stashing, and
partitioning. Furthermore, ACP is also low-latency, such that the
CPUs and NNX can work together closely on data in the L3 cache.

Software Abstractions Mobile SoC hardware and ML algo-
rithms are both evolving rapidly. Therefore, it is paramount to
present a programming interface that minimizes disruption to ap-
plication developers. This would make new hardware features easy
to use, and provide compatibility across a range of mobile SoCs.

The key of such a programming interface is a clear abstraction
that allows applications to execute DNN jobs efficiently on (one of
many) hardware accelerators, or fall back to execution on a CPU or
GPU. The AndroidNN API [1] provides an example of this principle,
by abstracting common DNN kernels such as convolution, and
scheduling execution through a hardware abstraction layer (HAL).

We provide optimized implementations for DNN kernels in the
form of ARM Compute Library [4]. The library takes advantage
of recent ARM ISA enhancements that provides new instructions
for essential linear algebra operations behind DNNs, such as the
new dot-product instructions in Arm’s NEON SIMD extension [5].
Finally, we provide IP-specific drivers and HAL implementations
to support the AndroidNN API.

System Optimizations While adding specialized NNX hard-
ware IP to the SoC improves kernel-level performance and effi-
ciency, the DNN component is typically only one stage in a larger
end-to-end application pipeline. For instance in computer vision,
many on/off-chip components such camera sensors, Image Signal
Processors (ISP), DRAMmemory, as well as the NNX have to collab-
orate together to deliver real time vision capabilities. The NNX IP
itself constitutes at most half of the total power/energy consump-
tion, and there are additional opportunities in jointly optimizing
the whole system.

Once we expand our scope to the system level, we expose new op-
timization opportunities by exploiting functional synergies across
different IP blocks; these optimizations are not obvious when con-
sidering the NNX in isolation. We will demonstrate this principle
in the following case study.

3 CASE STUDY: CONTINUOUS VISION
Computer vision (CV) tasks such as object classification, localiza-
tion, and tracking are key capabilities for a number of exciting new
application domains on mobile devices, such as augmented reality
(AR) and virtual reality (VR). However, the computational cost of
modern CV CNNs far exceed the severely limited power budget of
mobile devices, especially for real time (e.g., 1080p/60fps). This is
true even with a dedicated CNN hardware accelerator [12, 13, 15].

To achieve real-time object detection with high accuracy on mo-
bile devices, our key idea is to reduce the total number of expensive
CNN inferences through system-level optimizations. This is done
by harnessing the synergy between different hardware IPs of the
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Figure 2: Cross-IP optimization of object detection on a mo-
bile SoC allows over 40% reduction in energy (left) with less
than 1% accuracy loss (right).

vision subsystem. In particular, we leverage the fact that the image
signal processor (ISP) inherently calculates motion vectors (MV) for
use in its temporal denoising algorithms. Usually MVs are discarded
after de-noising, but we elect to expose them at the system level.
Instead of using CNN inference on every frame to track the move-
ment of objects, we reuse the MVs to extrapolate the movement
of objects detected in the previous video frame, without further
CNN inferencing for the current frame. As we increase the number
of consecutively extrapolated frames (extrapolation window, or
EW), the total number of CNN inferences is reduced, leading to
performance and energy improvements.

We also leverage the ARM ACP interface [3] to use the LLC for
inter-layer data reuse (e.g., feature maps), which would otherwise
be spilled to the DRAM from the NN accelerator’s local SRAM.
A typical L3 size in mobile devices is about 2 MB [14] and ACP
provides around 20 GB/s of bandwidth, which is sufficient to capture
the reuse of most layers in today’s object detection CNNs. This
design greatly reduces DRAM and system power consumption.

Finally, we present software support that abstracts away the
hardware implementation details. As Fig. 1 shows, the high-level
CV libraries are unmodified, keeping the AndroidNN interface
unchanged. We implement specific driver and HAL modifications
that our hardware augmentation entails.

We evaluated the system-level optimizations on an in-house SoC
simulator, which we calibrated with measurements on the Jetson
TX2 development board [6]. We use commonly-used benchmarks
such as VOT [9] and OTB [8] as well as our internal datasets. Results
in Fig. 2 show that compared to state-of-the-art object detection
frameworks such as YOLO [16] that execute an entire CNN for
every frame, our system reduces the energy by over 40% with less
than 1% accuracy loss at an extrapolation window (EW) size of
two. The energy saving is greater as EW increases, while accuracy
degrades. Compared to the conventional approach of reducing the
compute intensity by down-scaling the network (e.g., TinyYOLO,
which is ∼ 5 × simpler), our system achieves higher energy savings
and higher accuracy.

4 CONCLUSION
Efficiently supporting demandingMLworkloads on energy-constrained
mobile devices requires careful attention to the overall system de-
sign. We emphasized three key research priorities: accelerator in-
terfacing, software abstractions, and cross-IP optimizations.
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