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ABSTRACT

Federated learning poses new statistical and systems challenges in
the training of machine learning models over distributed networks
of devices. In this ongoing work, we develop a state of the art MTL
federated system that bypasses the modelling limitations of pre-
vious efforts through the inclusion of non-linear mappings in its
formulation. We address the new issues that arise due to this inclu-
sion and that are associated with the particulars of the federated
scenario, such as communication and storage costs, introducing
this way the first fully practical kernelized federated framework.

1 INTRODUCTION

Mobile phones, wearable devices, and smart homes are just a few
of the modern distributed networks generating massive amounts
of data each day. Due to the growing storage and computational
power of devices in these networks, it is increasingly attractive to
store data locally and push more network computation to the edge.
Training statistical models directly on these devices is explored by
the burgeoning field of federated learning [12].

Learning in federated settings is fundamentally different than in
traditional distributed learning environments, requiring novel ma-
chine learning methods that can simultaneously handle the follow-
ing challenges: (i) statistical: data is collected in a non-IID manner
across the network, with data on each device being generated by a
distinct distribution; (ii) systems: extreme communication bottle-
necks, different computational capacities across nodes, stragglers
and dropped nodes; and (iii) deployment: the known ‘cold-start’
and ‘concept drift’ phenomena.

Recent work has been successful in tackling the above statisti-
cal and systems challenges through a multi-task learning (MTL)
framework, learning separate but related models for each node [15].
Nonetheless, this work is restricted to linear MTL formulations,
which earlier efforts have shown to have limited expressive power
[13, 17]. The objective of this ongoing work is thus to develop a
novel federated approach that, through the inclusion of kernels,
can capture non-linear relationships both in the local models and in
the relationships among them. Including this new class of models
comes with its own set of challenges such as storage costs, privacy
concerns and new communication overheads, which we address in
order to present the first fully practical kernelized federated system.

2 RELATED WORK

In federated learning, the aim is to learn a model over data that
resides on, and has been generated by, m distributed nodes, where
each node t € [m] may generate data at a different pace and from
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a distinct distribution. It is then natural to fit separate models to
the distributed data—one for each local dataset. However, structure
between models frequently exists, and modeling these relationships
via MTL is a natural strategy to improve performance and boost
the effective sample size for each node [1, 2, 4].

Recently, MocHA has developed a federated framework that
leverages MTL as a statistical modeling choice while also exploring
some of the systems challenges associated with federated learning,
providing both convergence guarantees and insight into practical
performance [15]. Unfortunately, among other limitations, MOCHA
is restricted to a simple model family (regularized linear models) and
is thus short of becoming a fully practical MTL federated system.

Finally, previous works have either argued for [10, 17] or em-
pirically demonstrated [13] the benefits of introducing non-linear
mappings in their MTL formulations. These works, however, either
don’t deal with the distributed scenario [13, 17], or consider unfeasi-
ble the distributed computation of the kernel matrix, opting instead
for explicit or approximate feature mappings [10]. Furthermore, pre-
vious work does not take into account the systems challenges that
arise in the federated setting, which is one of the main contributions
of this work.

3 FEDERATED KERNELIZED MULTI-TASK
LEARNING

Given data X; € R¥*M: from m nodes, multi-task learning fits
separate weight vectors w; € R¥ to the data for each task (node)
through arbitrary convex loss functions ¢;. Many MTL problems
can be captured via the following general formulation:
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where W = [wy,...,wp] € RXM is 2 matrix whose ¢-th column
is the weight vector for the ¢-th task, ¢(-) is a feature mapping that
can be non-linear, and the matrix Q € R™*"™ models relationships
amongst tasks. MTL problems differ based on their assumptions on
R, which takes Q as input and promotes some suitable structure
amongst the tasks. For this work, we will focus on the following
popular bi-convex formulation:

R(W, Q) = g tr(WQwT), @)

with constant A and constraints Q=1 > 0, tr(Q~!) = 1. This formu-
lation learns the relationships between tasks [5, 7, 17, 18] while also
performing L, regularization on each local model. We use it because
it allows for kernelizable solutions for both W and Q (Sections 3.1
and 3.2).
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In order to solve the linear version of (1), existing methods use an
alternating optimization procedure [10, 15, 17]. The first step fixes
Q and updates W in a distributed fashion, as data is horizontally
split across m nodes. Meanwhile, the second fixes W and optimizes
for Q, which can be done centrally as Q does not depend on the
data.

3.1 Federated Update of W

To update W in the federated setting, we extend from previous
work [8, 10, 11, 15] in order to exploit the dual formulation of (1) and
separate the global problem into appropriate federated subproblems.
For our particular choice of R(W, Q) (2), we have the dual form

1 m 1 n;
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where n = Z;’Ll ng, €} is the convex conjugate of {;, « is the con-
catenation of the dual variables for all m tasks and Ky, ;) ix(u, j) =
%((ﬁ(x;), $(x),)), where we defined ix(t,i) = i + 22:1 ny and
Oty = Q;} It is clear then that we can perform the ‘kernel-trick’
by replacing (¢(x§), $(x),)) with the kernel k(xi, x,).

Subproblems. In order to solve (3) across distributed nodes, we
define subproblems to be solved locally by each node. The ¢-th
subproblem, which finds update Aa[;] € R" to the dual variables
in & corresponding to node t, is given by~

Amal[n pAa[ ]K[t [Aas + Zé’t(Aat) (4)

where p is a constant that accounts for the degree of separabil-
ity of K when we block-approximate it [15, 16] and ft(Aa;) =
nt_lfj((xl’; + Aaf) + A_I(Ka)[,]Aai. These subproblems should only
require access to data which is available locally, yet (4) depends on
K (particularly, on the product (KAe)[;]), which requires access to
the data in all the nodes. Nevertheless, communicating and stor-
ing the totality of the data in all the nodes is unacceptable in the
federated setting.

Our proposed solution to this issue is to leverage MocHA with
the recently proposed Parallel Block Minimization (PBM) algo-
rithm [6] as shown in Algorithm 1. PBM only communicates local
support vectors in each iteration, which have been found in prac-
tice to usually be orders of magnitude less than the total number
of vectors for appropriate loss functions. As such, this solution is
a successful federated learning strategy under the assumption of
sparsity and if we allow the communication of information among
nodes. However, the number of support vectors is indeed problem-
dependent, leaving the need for an alternative that is guaranteed
to be communication-efficient in the worst case.

An ongoing line of work that addresses this issues is the use
of a low-rank approximation of the kernel matrix K. Succinctly, a
rank-/ approximation of K could be constructed via the Nystréom
method [9] with [ cluster centers of the original columns (which
could be done once centrally). Given a small enough [, the approxi-
mation, which would take only O(lZ + nl) space, could be commu-
nicated and stored efficiently, and MocHA could be run from that
point forward. Even more, it would possible to adapt this clustering
in order to address the privacy concerns that inevitably come up
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Algorithm 1 Kernelized Federated Multi-Task Learning

1: Input: Data X; fort =1,..
initial matrix Qg
2: Starting point (KA@)[;):=0€ R fort =1,...,m

., m, stored on one of m nodes, and

3. for iterations i = 0,1,... do

4 Set p := max; Y-, lg‘;':l

5: Set number of federated iterations H;

6: Communicate o4 tonode t = 1,...,m

7: for iterations h = 0,1,--- ,H; do

8: for nodes t € {1,2,...,m} in parallel do
9 Solve (4) locally

10: Broadcast {xi, AaHAai # 0}

11: Compute K[;1.Aa[;] in parallel

12: REDUCE_SCATTER to obtain (KAa)[4
13: Update a[;] « o + Aoy

14: Update (Ka)|;) < (Ka)[s] + (KAa)[4
15: Update Q centrally based on latest & (Section 3.2)

—_

6: return: Q, o

when sharing users’ data [3], and which our current PBM-based
solution does not take into account.

3.2 Central Update of Q

With W fixed and our choice of R(W, Q) (2), an analytical solution
for Q1 [17] is,

L (WTwy
Q = - 1\ (5)
tr((wTW)i)
O' tOgu
W Wpg = = 5 0 D ae K i) (@
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With this formulation, the tasks’ clustering can also be performed
in the high dimensional space specified by the kernel. A kernelized
form may not exist for other formulations of R(W, Q), which could
be solved by using an explicit mapping ¢(-) (e.g. approximating
infinite dimensional kernels via random features [14] at the expense

1 al
2 Zum:l Z:lul nu ¢(Xu)0tu

4 CONCLUSIONS AND FUTURE WORK

We have discussed a novel federated MTL system that captures
a larger family of more expressive, non-linear models than the
current state of the art [15], and have discussed how to make it
robust to the systems challenges of this particular scenario. These
are necessary steps towards this work’s ultimate goal: to introduce
the first fully practical kernelized federated framework.

Now, beyond providing a method that is theoretically sound and
based on proven algorithms, a crucial part of this work is to test
the framework in practice. To do this, we are currently performing
extensive experimentation on a variety of real-world federated
datasets. These experiments will, ultimately, also provide a much
needed set of benchmarks for this field.

of some accuracy) and updating w; =
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