
Efficient Deep Learning Inference on Edge Devices
Ziheng Jiang∗
Fudan Unversity

ziheng@apache.org

Tianqi Chen
University of Washington
tqchen@cs.washington.edu

Mu Li
Amazon AI

mli@amazon.com

ABSTRACT
Deploying deep learning (DL) models on edge devices is getting
popular nowadays. The huge diversity of edge devices, with both
computation and memory constraints, however, make efficient
deployment challenging. In this paper, we propose a two-stage
pipeline that optimizes DL models on target devices. The first stage
optimizes the inference workloads, and the second stage searches
optimal kernel implementations on the target device. We imple-
mented this pipeline with the TVM stack. Our contributions include
new algorithmic optimization that is crucial to edge devices, such
as quantization and joint kernel turning. On Raspberry Pi, com-
pared to manually optimized frameworks, we will demonstrate our
pipeline improves inference latency by 3x for ResNet-18 and by 10x
for MobileNet, and generates compact runtime library with size
less than 1MB.
ACM Reference Format:
Ziheng Jiang, Tianqi Chen, and Mu Li. 2018. Efficient Deep Learning In-
ference on Edge Devices. In Proceedings of ACM Conference on Systems
and Machine Learning (SysML’18). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Thanks to the rapid performance increase of low-power processors
and the huge demand of Internet of Things applications, there
is a growing interest in deploying deep learning models on edge
devices [12]. It not only reduces the latency of streaming data back
to cloud but also saves the cost. These devices, however, are still an
order of magnitude lower than desktop and server processors. The
performance, together with memory consumption, therefore, is the
key to success.

One major challenging for optimizing the performance is the
huge diversity of edge devices. Even for the same ARM CPU ar-
chitecture, each chip vendor may use its own unique specification,
despite the more diverse low-power GPU, DSP and DL accelerators.

There exists libraries to simply this optimization. NNPack [5]
provides manually optimized neural network operators on ARM
CPUs. Android NN [6] targets for efficient DL inference on Android
devices while Core ML [2] aims for the same thing but only for
Apple devices. To our best knowledge, none of them is able to

∗This work is done by Ziheng Jiang during his internship at Amazon AI

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SysML’18, April 2018, Stanford, CA USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

optimize models trained with different DL frameworks on a wide
range of edge devices.

In this paper, we propose an end-to-end pipeline that optimizes
DL inference on various edge devices. Given a pre-trained model
and a target device, we first optimize its computation graph to
simplify the inference workload, and then automatically search an
efficient implementation on the target device. The outputs contain
a minimal runtime for the target device, a set of optimized operator
kernels, and compact model parameters.

2 GRAPH OPTIMIZATION
DL workloads can be represented as computation graphs, whose
vertices are abstract operators, such as conv2d, which are then
bound with kernels that describe the concrete computational pro-
cedures. The edges present the data, which are multi-dimensional
arrays with a particular data type, passed between operators.

The goal of graph optimization is transforming a computation
graph into another form to reduce execution time and memory con-
sumption. We list several optimization procedures as the following,
which share a similarity to compiler optimization.
Constant Folding. If an operator only has constant inputs, then
we can replace it by pre-computing its results.
Graph Simplification. Some operators can be simplified during
inference. For example, dropout [14] layers can be removed be-
cause it is an identity function during inference. The batch-norm
layer [10] normalizes input x by

y = γ
x −mean
√
var + ϵ

+ β =

(
γ

√
var + ϵ

)
x +

(
β −

mean
√
var + ϵ

)
All inputs except for x are constants and therefore it can be

folded to a multiplication followed by a plus.
Kernel Fusion. Multiple operators can be grouped together to
be bound with a single fused kernel. A fuse kernel is often more
efficient due to better memory locality and consumes less memory.
One example rule is fusing an operator with its subsequent elemen-
twise operators, such as conv2d with all following activation and
batch-norm layers.
Pre-computing Layout Transformation. A kernel may use dif-
ferent data layouts internally to improve the memory locality. If
inputs are constant, e.g. model weights, then we can pre-compute
the layout transformation by inserting proper transformation oper-
ators into the graph and then performing constant folding.
Quantization. Use a low-precision data type than the commonly
used 320bit floating-point reduces not only memory usage but may
also accelerate the computation and save the power [7].

We followed [7] to use the fixed-point data type with random-
ized rounding. The quantization operator may lead to enormous
overhead on edge devices. We pre-compute both the number of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, April 2018, Stanford, CA USA Ziheng Jiang, Tianqi Chen, and Mu Li

fractional bits with a validation dataset and a random number bank
to accelerate the quantization.

3 KERNEL OPTIMIZATION
A kernel can be partitioned into two parts: one is the algorithm that
specifies how to compute outputs, the other one is the schedule that
defines the execution of the algorithm. The kernel efficiency, there-
fore, depends on both the arithmetic complexity of the algorithm
and hardware resource utilization of the schedule.

Take conv2d as an example, the plain algorithm computes 2D
convolution straightforward by definition. A fast algorithm may
use either FFT or Winograd to accelerate the convolution [11].
A schedule explores multiple aspects to improve the execution
efficiency on hardware, such as:

Tiling. Partition each input into blocks to fit into cache, then
compute block by block.

Reordering. Arrange the order of for loops to improve mem-
ory locality. .

Unrolling. Replace a for loop into repeated code sentences.
Vertorization: Replace a for loop with vector instructions.
Parallelization. Execute a for loop in parallel.
The best schedule depends on the hardware specification, such

as the cache size, the number of cores, and the instruction set. Man-
ually optimizing schedule for edge devices is difficult due to the
diversity. Instead, for each operator with particular input shapes,
we generate a large number of configurations with various tile sizes,
loop orders, parallelization schemes, and unrolling and vectoriza-
tion lengths. Different to [13] by using a cost model, which is also
hard for edge devices, we benchmark each configuration on the
target device directly and then pick the fastest schedule.

4 EVALUATION
We implemented the graph optimization in NNVM [4], a compu-
tation graph manipulation library, which supports multiple DL
frameworks as the frontend. Kernels are defined by using the TVM
IR [1], which is Tensor IR stack supportingmultiple backend devices.
We used straightforward algorithms for simplicity.

We benchmarked two convolutional neural networks, ResNet-
18 [8] and MobileNet [9]. We report the inference latency with
batch size 1. The edge device used for evaluation is Raspberry Pi
3B, which ships a quad-core 1.2GHz ARM Cortex A52 CPU. The
schedules are searched on 10 Raspberry Pi in parallel. For each
model, it took around an hour to find the best schedules.

We first compare the performance of the searched kernels versus
NNPack. As can be seen in Figure 1, the searched kernels outperform
NNPACK kernels by 2x in total. Note that NNPack uses Winograd
and FFT to accelerate conv2d. Even with a plain algorithm, search-
ing best schedules in a large space on the target device significantly
outperforms fast algorithms with sub-optimal schedules.

The performance of the quantized conv2d is shown in Figure 1
as well. The version uses INT8 inputs and accumulates the results
with INT32 outperforms the FP32 version by 22%. The A52 CPU
provides a more efficient INT8 FMA instruction that accumulates
results with INT16, which improves the FP32 version by 1.3x.

The end-to-end inference performance results are shown in Fig-
ure 2. We used pre-trained model parameters from MXNet [3], and

Ti
m

e
(m

s)

0

90

180

7/512/3/1 14/512/3/2 14/256/3/1 224/64/7/2 56/64/3/1

9.6410.49.9311.6
27.8

16.017.617.523.7

53.7

21.521.923.528.6

62.5

24.4
44.1

56.4

23.2

179.8

NNPack (FP32) Kernel Opt (FP32)
Kernel Opt (INT8/INT32) Kernel Opt (INT8/INT16)

Figure 1: Inference time of the top 5 time consuming convo-
lution layers in ResNet-18. The name convention is input-
shape/output-channel/kernel-size/stride.

Ti
m

e
(m

s)

0

1250

2500

MobileNet ResNet 18

369
175

509
204

588
328

1120

2429 MXNet (NNPack)
Kernel Opt
+Graph Opt w/o Quantization
+Quantization (INT8/INT32)

Figure 2: End-to-end inference time.

MXNet with NNPack backend is used as the baseline. As can be
seen, even just executing searched kernels sequentially, the pro-
posed pipeline outperforms the baseline by 1.9x for ResNet-18 and
7.4x for MobileNet. The reason that the improvement for MobileNet
is more significant than ResNet is because that neither MXNet nor
NNPack provide well-optimized depth-wise convolution layers on
ARM CPUs. Adding graph optimization except for quantization, we
can improve the inference time further by 15% for ResNet-18 and
60% for MobileNet.

For the quantization optimization, we quantized both model
weights and inputs into INT8. Despite accumulating results with
INT16 is 2x faster than INT32, there is around 5% loss on inference
accuracy due to the insufficient numerical precision of INT16. We,
therefore, let cond2d output INT32 results. As a result, INT8 quan-
tization reduces 40% latency compared to FP32, with the cost that
decreasing the top-1 accuracy from 68.4% to 67.8%. The improve-
ment for MobileNet, 17%, is less significant than ResNet, mainly
becuase the quantization overhead takes a larger portion of the
total time.

Finally, our pipeline generates a 476KB size runtime for Rasp-
berry Pi. The size of the searched kernels is 179KB for ResNet-18
and 145KB for MobileNet. Graph simplification reduces the size of
the batch-norm layer parameters. With INT8 quantization, we can
decrease the model size by another 4x.

5 CONCLUSION
In this paper, we proposed a two-stage pipeline to optimize deep
learning inference on edge devices. Inference workloads are first op-
timized through graph transformation, and then optimized kernel
implementations are searched on the target device. We demon-
strated that the proposed pipeline significantly reduces both run-
time library size and inference latency on Raspberry Pi.

Efficient Deep Learning Inference on Edge Devices SysML’18, April 2018, Stanford, CA USA

REFERENCES
[1] 2017. Tensor Virtual Machine. (2017). https://github.com/dmlc/tvm
[2] Apple. 2017. Core ML: Integrate machine learning models into your app. (2017).

https://developer.apple.com/documentation/coreml
[3] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[4] DMLC. 2016. Neural Network Virtual Machine. (2016). https://github.com/dmlc/
nnvm

[5] Marat Dukhan. 2016. NNPACK: an acceleration package for neural network
computations. (2016). https://github.com/Maratyszcza/NNPACK

[6] Google. 2017. Android NDK: Neural Networks API. (2017). https://developer.
android.com/ndk/guides/neuralnetworks/index.html

[7] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learning with limited numerical precision. In Proceedings of the 32nd
International Conference on Machine Learning (ICML-15). 1737–1746.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[10] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning. 448–456.

[11] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 4013–4021.

[12] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. 2017.
Deep Learning for IoT Big Data and Streaming Analytics: A Survey. arXiv preprint
arXiv:1712.04301 (2017).

[13] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. 2016. Automatically scheduling halide image processing
pipelines. ACM Transactions on Graphics (TOG) 35, 4 (2016), 83.

[14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research 15, 1 (2014), 1929–1958.

https://github.com/dmlc/tvm
https://developer.apple.com/documentation/coreml
https://github.com/dmlc/nnvm
https://github.com/dmlc/nnvm
https://github.com/Maratyszcza/NNPACK
https://developer.android.com/ndk/guides/neuralnetworks/index.html
https://developer.android.com/ndk/guides/neuralnetworks/index.html

	Abstract
	1 Introduction
	2 Graph Optimization
	3 Kernel Optimization
	4 Evaluation
	5 Conclusion
	References

